# Class 10 Math Chords and Arcs

Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

$Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.$

$(v) A pair of chords of a circle subtending two congruent central angles is:(a) congruent(b) incongruent(c) over lapping(d) parallel$

$2 . In a circle prove that the arcs between two parallel and equal chords are equal.$

$(iii) Out of two congruent arcs of a circle if one arc makes a central angle of 30^{\circ} then the other arc will subtend the central angle of:(a) 15^{\circ} (b) 30^{\circ} (c) 45^{\circ} (d) 60^{\circ}$

$(vii) The semi circumference and the diameter of a circle both subtend a central angle of:(a) 90^{\circ} (b) 180^{\circ} (c) 270^{\circ} (d) 360^{\circ}$

$(x) The arcs opposite to incongruent central angles of a circle arc always:(a) congruent(b) incongruent(c) parallel(d) perpendicular$