Classes

Class 10 Math Chords and Arcs


Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

Class 9Class 10First YearSecond Year
(ii)Thelengthofachordandtheradialsegmentofacirclearecongruentthecentralanglemadebythechordwillbe:(a)30(b)45(c)60(d)75(ii) The length of a chord and the radial segment of a circle are congruent the central angle made by the chord will be:(a) 30^{\circ} (b) 45^{\circ} (c) 60^{\circ} (d) 75^{\circ}

Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.
Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.

Example1:Theinternalbisectorofacentralangleinacirclebisectsanarconwhichitstands.Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.

(v) A pair of chords of a circle subtending two congruent central angles is:(a) congruent(b) incongruent(c) over lapping(d) parallel
(v) A pair of chords of a circle subtending two congruent central angles is:(a) congruent(b) incongruent(c) over lapping(d) parallel

(v)Apairofchordsofacirclesubtendingtwocongruentcentralanglesis:(a)congruent(b)incongruent(c)overlapping(d)parallel(v) A pair of chords of a circle subtending two congruent central angles is:(a) congruent(b) incongruent(c) over lapping(d) parallel

2 . In a circle prove that the arcs between two parallel and equal chords are equal.
 2 .  In a circle prove that the arcs between two parallel and equal chords are equal.

2.Inacircleprovethatthearcsbetweentwoparallelandequalchordsareequal. 2 . In a circle prove that the arcs between two parallel and equal chords are equal.

(iii) Out of two congruent arcs of a circle if one arc makes a central angle of 30^{\circ} then the other arc will subtend the central angle of:(a) 15^{\circ} (b) 30^{\circ} (c) 45^{\circ} (d) 60^{\circ}
(iii) Out of two congruent arcs of a circle if one arc makes a central angle of  30^{\circ}  then the other arc will subtend the central angle of:(a)  15^{\circ} (b)  30^{\circ} (c)  45^{\circ} (d)  60^{\circ}

(iii)Outoftwocongruentarcsofacircleifonearcmakesacentralangleof30thentheotherarcwillsubtendthecentralangleof:(a)15(b)30(c)45(d)60(iii) Out of two congruent arcs of a circle if one arc makes a central angle of 30^{\circ} then the other arc will subtend the central angle of:(a) 15^{\circ} (b) 30^{\circ} (c) 45^{\circ} (d) 60^{\circ}

(vii) The semi circumference and the diameter of a circle both subtend a central angle of:(a) 90^{\circ} (b) 180^{\circ} (c) 270^{\circ} (d) 360^{\circ}
(vii) The semi circumference and the diameter of a circle both subtend a central angle of:(a)  90^{\circ} (b)  180^{\circ} (c)  270^{\circ} (d)  360^{\circ}

(vii)Thesemicircumferenceandthediameterofacirclebothsubtendacentralangleof:(a)90(b)180(c)270(d)360(vii) The semi circumference and the diameter of a circle both subtend a central angle of:(a) 90^{\circ} (b) 180^{\circ} (c) 270^{\circ} (d) 360^{\circ}

(x) The arcs opposite to incongruent central angles of a circle arc always:(a) congruent(b) incongruent(c) parallel(d) perpendicular
(x) The arcs opposite to incongruent central angles of a circle arc always:(a) congruent(b) incongruent(c) parallel(d) perpendicular

(x)Thearcsoppositetoincongruentcentralanglesofacirclearcalways:(a)congruent(b)incongruent(c)parallel(d)perpendicular(x) The arcs opposite to incongruent central angles of a circle arc always:(a) congruent(b) incongruent(c) parallel(d) perpendicular

banner6000+ MCQs with instant video solutions