Classes
Class 9Class 10First YearSecond Year
$Example 1: A point P on the circumference is equidistant from the radii \overline{O A} and O B . Prove that m \overparen{A P}=m \overparen{B P}$

$Example 1: The internal bisector of a central angle in a circle bisects an arc on which it stands.$

$(v) A pair of chords of a circle subtending two congruent central angles is:(a) congruent(b) incongruent(c) over lapping(d) parallel$

$2 . In a circle prove that the arcs between two parallel and equal chords are equal.$

$(iii) Out of two congruent arcs of a circle if one arc makes a central angle of 30^{\circ} then the other arc will subtend the central angle of:(a) 15^{\circ} (b) 30^{\circ} (c) 45^{\circ} (d) 60^{\circ}$

$(vii) The semi circumference and the diameter of a circle both subtend a central angle of:(a) 90^{\circ} (b) 180^{\circ} (c) 270^{\circ} (d) 360^{\circ}$

$(x) The arcs opposite to incongruent central angles of a circle arc always:(a) congruent(b) incongruent(c) parallel(d) perpendicular$