Classes

Class 9 Math Matrices and Determinants 4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -


Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

Class 9Class 10First YearSecond Year
4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(im) BC

17. Let \mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right] and C=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 8 \\ 2 & 7 & 6\end{array}\right] Show that :(V) \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{-7}=\pm=
17. Let  \mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]  and  C=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 8 \\ 2 & 7 & 6\end{array}\right] Show that :(V)  \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{-7}=\pm=

17. Let \mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right] and C=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 8 \\ 2 & 7 & 6\end{array}\right] Show that :(V) \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{-7}=\pm=

Evaluate the following determinants using their properties.8. \left|\begin{array}{lll}x & y & z \\ z & x & y \\ y & z & x\end{array}\right|
Evaluate the following determinants using their properties.8.  \left|\begin{array}{lll}x & y & z \\ z & x & y \\ y & z & x\end{array}\right|

Evaluate the following determinants using their properties.8. \left|\begin{array}{lll}x & y & z \\ z & x & y \\ y & z & x\end{array}\right|

18. Prove the following identities :\[\left\{\left[\begin{array}{lll}1 & \omega & \omega^{2} \\\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega\end{array}\right]+\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega \\\omega & \omega^{2} & 1\end{array}\right]\right\}\left[\begin{array}{l}1 \\\omega \\\omega^{2}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]\]where \omega is a complex cube root of unity.
18. Prove the following identities :\[\left\{\left[\begin{array}{lll}1 & \omega & \omega^{2} \\\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega\end{array}\right]+\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega \\\omega & \omega^{2} & 1\end{array}\right]\right\}\left[\begin{array}{l}1 \\\omega \\\omega^{2}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]\]where  \omega  is a complex cube root of unity.

18. Prove the following identities :\[\left\{\left[\begin{array}{lll}1 & \omega & \omega^{2} \\\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega\end{array}\right]+\left[\begin{array}{lll}\omega & \omega^{2} & 1 \\\omega^{2} & 1 & \omega \\\omega & \omega^{2} & 1\end{array}\right]\right\}\left[\begin{array}{l}1 \\\omega \\\omega^{2}\end{array}\right]=\left[\begin{array}{l}0 \\0 \\0\end{array}\right]\]where \omega is a complex cube root of unity.

1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(vii)\[\begin{array}{l}2 x-2 y=4 \\-5 x-2 y=-10\end{array}\]
1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(vii)\[\begin{array}{l}2 x-2 y=4 \\-5 x-2 y=-10\end{array}\]

1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(vii)\[\begin{array}{l}2 x-2 y=4 \\-5 x-2 y=-10\end{array}\]

8. Let A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ -1 & 4 & 3 \\ 0 & 8 & 5\end{array}\right] and X=\left[\begin{array}{ccc}2 & 1 & -1 \\ -3 & 2 & -4 \\ 5 & 4 & 0\end{array}\right] Find:(ii) \lambda I-A where \lambda is any scalar and I is a unit matrix of order 3 .
8. Let  A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ -1 & 4 & 3 \\ 0 & 8 & 5\end{array}\right]  and  X=\left[\begin{array}{ccc}2 & 1 & -1 \\ -3 & 2 & -4 \\ 5 & 4 & 0\end{array}\right] Find:(ii)   \lambda I-A where  \lambda  is any scalar and I is a unit matrix of order  3 .

8. Let A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ -1 & 4 & 3 \\ 0 & 8 & 5\end{array}\right] and X=\left[\begin{array}{ccc}2 & 1 & -1 \\ -3 & 2 & -4 \\ 5 & 4 & 0\end{array}\right] Find:(ii) \lambda I-A where \lambda is any scalar and I is a unit matrix of order 3 .

Evaluate the following determinants using their properties.7. \left|\begin{array}{ccc}a+b+2 c & b & a \\ c & b & b+c+2 a \\ c & c+a+2 b & a\end{array}\right|
Evaluate the following determinants using their properties.7.  \left|\begin{array}{ccc}a+b+2 c & b & a \\ c & b & b+c+2 a \\ c & c+a+2 b & a\end{array}\right|

Evaluate the following determinants using their properties.7. \left|\begin{array}{ccc}a+b+2 c & b & a \\ c & b & b+c+2 a \\ c & c+a+2 b & a\end{array}\right|

Show that :11. \left|\begin{array}{lll}x+2 y & x+6 y & x+4 y \\ x+3 y & x+7 y & x+5 y \\ x+4 y & x+8 y & x+6 y\end{array}\right|=0
Show that :11.  \left|\begin{array}{lll}x+2 y & x+6 y & x+4 y \\ x+3 y & x+7 y & x+5 y \\ x+4 y & x+8 y & x+6 y\end{array}\right|=0

Show that :11. \left|\begin{array}{lll}x+2 y & x+6 y & x+4 y \\ x+3 y & x+7 y & x+5 y \\ x+4 y & x+8 y & x+6 y\end{array}\right|=0

3. Find the following producte.(iv) \left[\begin{array}{ll}6 & -0\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]
3. Find the following producte.(iv)  \left[\begin{array}{ll}6 & -0\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]

3. Find the following producte.(iv) \left[\begin{array}{ll}6 & -0\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]

Q.14 \left[\begin{array}{lll}0 & 0 & 0\end{array}\right] is(a) scalar matrix(b) diagonal matrix(c) identity matrix(d) null matrix
Q.14  \left[\begin{array}{lll}0 & 0 & 0\end{array}\right]  is(a) scalar matrix(b) diagonal matrix(c) identity matrix(d) null matrix

Q.14 \left[\begin{array}{lll}0 & 0 & 0\end{array}\right] is(a) scalar matrix(b) diagonal matrix(c) identity matrix(d) null matrix

Q.58 If \left|\begin{array}{cc}-1 & 3 \\ x & 1\end{array}\right|=0 then x= (a) 3(b) -3 (c) \frac{1}{3} (d) -\frac{1}{3} Lahore Board 2015; Multan Board 2004
Q.58 If  \left|\begin{array}{cc}-1 & 3 \\ x & 1\end{array}\right|=0  then  x= (a) 3(b)  -3 (c)  \frac{1}{3} (d)  -\frac{1}{3} Lahore Board 2015; Multan Board 2004

Q.58 If \left|\begin{array}{cc}-1 & 3 \\ x & 1\end{array}\right|=0 then x= (a) 3(b) -3 (c) \frac{1}{3} (d) -\frac{1}{3} Lahore Board 2015; Multan Board 2004

9. Let A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2\end{array}\right] and B=\left[\begin{array}{ll}0 & 1 \\ 1 & 2 \\ 2 & 0\end{array}\right] . Find:(iv) \mathrm{B}^{8} \cdot \mathrm{A}^{2}
9. Let  A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2\end{array}\right]  and  B=\left[\begin{array}{ll}0 & 1 \\ 1 & 2 \\ 2 & 0\end{array}\right] . Find:(iv)  \mathrm{B}^{8} \cdot \mathrm{A}^{2}

9. Let A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 1 & 0 \\ 0 & 1 & 2\end{array}\right] and B=\left[\begin{array}{ll}0 & 1 \\ 1 & 2 \\ 2 & 0\end{array}\right] . Find:(iv) \mathrm{B}^{8} \cdot \mathrm{A}^{2}

Evaluate the following determinants using their properties.9. \left|\begin{array}{lll}1 & x^{3} & x \\ 1 & y^{3} & y \\ 1 & z^{2} & z\end{array}\right|
Evaluate the following determinants using their properties.9.  \left|\begin{array}{lll}1 & x^{3} & x \\ 1 & y^{3} & y \\ 1 & z^{2} & z\end{array}\right|

Evaluate the following determinants using their properties.9. \left|\begin{array}{lll}1 & x^{3} & x \\ 1 & y^{3} & y \\ 1 & z^{2} & z\end{array}\right|

4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(v) CB
4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(v) CB

4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(v) CB

Evaluate the following determinants:1. \left|\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 1\end{array}\right|
Evaluate the following determinants:1.  \left|\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 1\end{array}\right|

Evaluate the following determinants:1. \left|\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & 1\end{array}\right|

Evaluate the following determinants using their properties.10. \left|\begin{array}{ccc}x+y & x & y \\ x & y & x+y \\ y & x+y & x\end{array}\right|
Evaluate the following determinants using their properties.10.  \left|\begin{array}{ccc}x+y & x & y \\ x & y & x+y \\ y & x+y & x\end{array}\right|

Evaluate the following determinants using their properties.10. \left|\begin{array}{ccc}x+y & x & y \\ x & y & x+y \\ y & x+y & x\end{array}\right|

Example.Let A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 8 \\ -1 & 2 & -3\end{array}\right] and B=\left[\begin{array}{ccc}2 & 3 & 4 \\ -4 & 6 & -8 \\ 1 & 2 & 5\end{array}\right] Then(iii)\[\begin{aligned}A B &=\left[\begin{array}{ccc}2-8+3 & 3+12+6 & 4-16+15 \\8-24+8 & 12+36+16 & 16-48+40 \\-2-8-3 & -3+12-6 & -4-16-15\end{array}\right] \\&=\left[\begin{array}{ccc}-3 & 21 & 3 \\-8 & 64 & 8 \\-13 & 3 & -35\end{array}\right]\end{aligned}\]
Example.Let  A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 8 \\ -1 & 2 & -3\end{array}\right]  and  B=\left[\begin{array}{ccc}2 & 3 & 4 \\ -4 & 6 & -8 \\ 1 & 2 & 5\end{array}\right] Then(iii)\[\begin{aligned}A B &=\left[\begin{array}{ccc}2-8+3 & 3+12+6 & 4-16+15 \\8-24+8 & 12+36+16 & 16-48+40 \\-2-8-3 & -3+12-6 & -4-16-15\end{array}\right] \\&=\left[\begin{array}{ccc}-3 & 21 & 3 \\-8 & 64 & 8 \\-13 & 3 & -35\end{array}\right]\end{aligned}\]

Example.Let A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 6 & 8 \\ -1 & 2 & -3\end{array}\right] and B=\left[\begin{array}{ccc}2 & 3 & 4 \\ -4 & 6 & -8 \\ 1 & 2 & 5\end{array}\right] Then(iii)\[\begin{aligned}A B &=\left[\begin{array}{ccc}2-8+3 & 3+12+6 & 4-16+15 \\8-24+8 & 12+36+16 & 16-48+40 \\-2-8-3 & -3+12-6 & -4-16-15\end{array}\right] \\&=\left[\begin{array}{ccc}-3 & 21 & 3 \\-8 & 64 & 8 \\-13 & 3 & -35\end{array}\right]\end{aligned}\]

1. Specily the type of each of the following matrices.(1) \left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \sqrt{5}\end{array}\right]
1. Specily the type of each of the following matrices.(1)  \left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \sqrt{5}\end{array}\right]

1. Specily the type of each of the following matrices.(1) \left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \sqrt{5}\end{array}\right]

6. Verify that if \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right] then(i) \left(A^{t}\right)^{t}=A
6. Verify that if  \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right]  then(i)  \left(A^{t}\right)^{t}=A

6. Verify that if \mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 2 & 0\end{array}\right] then(i) \left(A^{t}\right)^{t}=A

4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(im) BC
4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(im) BC
now playing
video locked

4.\[\begin{array}{l}l f=\left[\begin{array}{ccc}4 & 2 & 0 \\5 & 6 & 7 \\-3 & 1 & 9\end{array}\right] B=\left[\begin{array}{lll}2 & 3 & 1 \\1 & 1 & 1\end{array}\right] \\C=\left[\begin{array}{cc}-2 & -3 \\-4 & 0 \\1 & 3\end{array}\right]\end{array}\]then wherever possible compute the following :(im) BC

1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(i) 2 x-2 y=4 3 x+2 y=6
1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(i)  2 x-2 y=4  3 x+2 y=6
video locked

1. Use matrices if possible to solve the following systems of linear equations by:(i) the matrix inversion method (ii) the Cramers rule.(i) 2 x-2 y=4 3 x+2 y=6

Q.20 If A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] then adj A equals :(a) \left[\begin{array}{rr}d & b \\ -c & a\end{array}\right] (b) \left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right] (c) \left[\begin{array}{ll}d & b \\ c & a\end{array}\right] (d) \left[\begin{array}{rr}d & -b \\ c & a\end{array}\right] Gujranwala Board 2007
Q.20 If  A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]  then adj  A  equals :(a)  \left[\begin{array}{rr}d & b \\ -c & a\end{array}\right] (b)  \left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right] (c)  \left[\begin{array}{ll}d & b \\ c & a\end{array}\right] (d)  \left[\begin{array}{rr}d & -b \\ c & a\end{array}\right] Gujranwala Board 2007
video locked

Q.20 If A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] then adj A equals :(a) \left[\begin{array}{rr}d & b \\ -c & a\end{array}\right] (b) \left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right] (c) \left[\begin{array}{ll}d & b \\ c & a\end{array}\right] (d) \left[\begin{array}{rr}d & -b \\ c & a\end{array}\right] Gujranwala Board 2007

Q.32 If |A| is the determinant of a square matrix A then |A| is(a) always positive(b) modulus of A (c) always negative(d) may be nonnegative or negative
Q.32 If  |A|  is the determinant of a square matrix  A  then  |A|  is(a) always positive(b) modulus of  A (c) always negative(d) may be nonnegative or negative
video locked

Q.32 If |A| is the determinant of a square matrix A then |A| is(a) always positive(b) modulus of A (c) always negative(d) may be nonnegative or negative

Solve the following word problems by using(i) matrix inversion method (ii) Crammers rule.6 Two cars that are 600 \mathrm{~km} apart are moving towards each other. Their speeds differ by 6 \mathrm{~km} per hour and the cars are 123 \mathrm{~km} apart after 4 \frac{1}{2} hours. Find the speed of each car.
Solve the following word problems by using(i) matrix inversion method (ii) Crammers rule.6 Two cars that are  600 \mathrm{~km}  apart are moving towards each other. Their speeds differ by  6 \mathrm{~km}  per hour and the cars are  123 \mathrm{~km}  apart after  4 \frac{1}{2}  hours. Find the speed of each car.
video locked

Solve the following word problems by using(i) matrix inversion method (ii) Crammers rule.6 Two cars that are 600 \mathrm{~km} apart are moving towards each other. Their speeds differ by 6 \mathrm{~km} per hour and the cars are 123 \mathrm{~km} apart after 4 \frac{1}{2} hours. Find the speed of each car.

1. Find the inverse wherever possible of each of the following matrices by the adjoint method.(ix) \left[\begin{array}{lll}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right] where \omega is a complex cube root of unity.
1. Find the inverse wherever possible of each of the following matrices by the adjoint method.(ix)  \left[\begin{array}{lll}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right] where  \omega  is a complex cube root of unity.
video locked

1. Find the inverse wherever possible of each of the following matrices by the adjoint method.(ix) \left[\begin{array}{lll}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right] where \omega is a complex cube root of unity.

Q.62 If A=\left[\begin{array}{c}2 \\ -1\end{array}\right] and B=\left[\begin{array}{ll}5 & 0\end{array}\right] then A B is equal to :(a) \left[\begin{array}{rr}10 & 0 \\ -5 & 0\end{array}\right] (b) \left[\begin{array}{c}10 \\ 0\end{array}\right] (c) \left[\begin{array}{ll}10 & 0\end{array}\right] (d) \left[\begin{array}{c}10 \\ -5\end{array}\right] Falsalabad Board 2012
Q.62 If  A=\left[\begin{array}{c}2 \\ -1\end{array}\right]  and  B=\left[\begin{array}{ll}5 & 0\end{array}\right]  then  A B  is equal to :(a)  \left[\begin{array}{rr}10 & 0 \\ -5 & 0\end{array}\right] (b)  \left[\begin{array}{c}10 \\ 0\end{array}\right] (c)  \left[\begin{array}{ll}10 & 0\end{array}\right] (d)  \left[\begin{array}{c}10 \\ -5\end{array}\right] Falsalabad Board 2012
video locked

Q.62 If A=\left[\begin{array}{c}2 \\ -1\end{array}\right] and B=\left[\begin{array}{ll}5 & 0\end{array}\right] then A B is equal to :(a) \left[\begin{array}{rr}10 & 0 \\ -5 & 0\end{array}\right] (b) \left[\begin{array}{c}10 \\ 0\end{array}\right] (c) \left[\begin{array}{ll}10 & 0\end{array}\right] (d) \left[\begin{array}{c}10 \\ -5\end{array}\right] Falsalabad Board 2012

Q.19 The transpose of a row matrix is a(a) column matrix(b) diagonal matrix
Q.19 The transpose of a row matrix is a(a) column matrix(b) diagonal matrix
video locked

Q.19 The transpose of a row matrix is a(a) column matrix(b) diagonal matrix

Evaluate the following determinants:6. \left|\begin{array}{lll}1 & 1 & \omega \\ 1 & 1 & \omega^{2} \\ \omega & \omega^{2} & 1\end{array}\right| where \omega is a complex cube root of unity.
Evaluate the following determinants:6.  \left|\begin{array}{lll}1 & 1 & \omega \\ 1 & 1 & \omega^{2} \\ \omega & \omega^{2} & 1\end{array}\right| where  \omega  is a complex cube root of unity.
video locked

Evaluate the following determinants:6. \left|\begin{array}{lll}1 & 1 & \omega \\ 1 & 1 & \omega^{2} \\ \omega & \omega^{2} & 1\end{array}\right| where \omega is a complex cube root of unity.

(vi) Product of \left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right] is(a) [2 x+y] (b) [x-2 y] (c) [2 x-y] (d) [x+2 y]
(vi) Product of  \left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]  is(a)  [2 x+y] (b)  [x-2 y] (c)  [2 x-y] (d)  [x+2 y]
video locked

(vi) Product of \left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right] is(a) [2 x+y] (b) [x-2 y] (c) [2 x-y] (d) [x+2 y]

Q.36 If A=\left[\begin{array}{ll}1 & 7 \\ 6 & 4\end{array}\right] then |A| is equal to :(a) 46(b) -46 (c) 38(d) -38
Q.36 If  A=\left[\begin{array}{ll}1 & 7 \\ 6 & 4\end{array}\right]  then  |A|  is equal to :(a) 46(b)  -46 (c) 38(d)  -38
video locked

Q.36 If A=\left[\begin{array}{ll}1 & 7 \\ 6 & 4\end{array}\right] then |A| is equal to :(a) 46(b) -46 (c) 38(d) -38

MDCAT/ ECAT question bank