Classes

Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

Class 9Class 10First YearSecond Year
##### 1. For the decomposition of dinitrogen oxide \left(\mathrm{N}_{2} \mathrm{O}\right) into nitrogen and oxygen reversible reaction takes place as follows$2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$The concentration of \mathrm{N}_{2} \mathrm{O} \mathrm{N}_{2} and \mathrm{O}_{2} are 1.1 \mathrm{~mol} \mathrm{dm}^{-3} 3.90 \mathrm{~mol} \mathrm{dm}^{-3} and 1.95 \mathrm{~mol} \mathrm{dm}^{-3} respectively at equilibrium. Find out \mathrm{K}_{\mathrm{c}} for this reaction.

Q14 In the equilibrium$\mathrm{PCl}_{5}(\mathrm{~g}) \square \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+90 \mathrm{~kJ} \mathrm{~mol}^{-1}$What is the effect on(a) the position of equilibrium(b) equilibrium constant? ifi) temperature is increased

(c) Write equilibrium constant expression for the following reactions(ii) \mathrm{Ag}^{+} (aq) +\mathrm{Fe}^{2+} (aq) \square \mathrm{Fe}^{3+} (aq) +\mathrm{Ag}(\mathrm{s})

now playing

1. For the decomposition of dinitrogen oxide \left(\mathrm{N}_{2} \mathrm{O}\right) into nitrogen and oxygen reversible reaction takes place as follows$2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$The concentration of \mathrm{N}_{2} \mathrm{O} \mathrm{N}_{2} and \mathrm{O}_{2} are 1.1 \mathrm{~mol} \mathrm{dm}^{-3} 3.90 \mathrm{~mol} \mathrm{dm}^{-3} and 1.95 \mathrm{~mol} \mathrm{dm}^{-3} respectively at equilibrium. Find out \mathrm{K}_{\mathrm{c}} for this reaction.

11. Write note on :(ii) dynamic equilibrium

13. If reaction quotient Q_{c} of a reaction is more than K_{c} what will be the direction of the reaction?

Q15. Synthesis of ammonia by Habers process is an exothermic reaction.$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \ddot{A} H=-92.46 \mathrm{~kJ}$(d) What happens to equilibrium position of this reaction if \mathrm{NH}_{3} is removed from the reaction vessel from time to time?