Classes

First Year Chemistry Chemical Equilibrium 10. State Le-Chateliers principle. What are its industrial applications?


Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

Class 9Class 10First YearSecond Year
10. State Le-Chateliers principle. What are its industrial applications?

Q14 In the equilibrium\[\mathrm{PCl}_{5}(\mathrm{~g}) \square \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+90 \mathrm{~kJ} \mathrm{~mol}^{-1}\]What is the effect on(a) the position of equilibrium(b) equilibrium constant? ifi) temperature is increased
Q14 In the equilibrium\[\mathrm{PCl}_{5}(\mathrm{~g}) \square  \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})  \Delta \mathrm{H}=+90 \mathrm{~kJ} \mathrm{~mol}^{-1}\]What is the effect on(a) the position of equilibrium(b) equilibrium constant? ifi) temperature is increased

Q14 In the equilibrium\[\mathrm{PCl}_{5}(\mathrm{~g}) \square \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+90 \mathrm{~kJ} \mathrm{~mol}^{-1}\]What is the effect on(a) the position of equilibrium(b) equilibrium constant? ifi) temperature is increased

(c) Write equilibrium constant expression for the following reactions(ii) \mathrm{Ag}^{+} (aq) +\mathrm{Fe}^{2+} (aq) \square \mathrm{Fe}^{3+} (aq) +\mathrm{Ag}(\mathrm{s})
(c) Write equilibrium constant expression for the following reactions(ii)   \mathrm{Ag}^{+} (aq)  +\mathrm{Fe}^{2+}  (aq)  \square  \mathrm{Fe}^{3+}  (aq)  +\mathrm{Ag}(\mathrm{s})

(c) Write equilibrium constant expression for the following reactions(ii) \mathrm{Ag}^{+} (aq) +\mathrm{Fe}^{2+} (aq) \square \mathrm{Fe}^{3+} (aq) +\mathrm{Ag}(\mathrm{s})

1. For the decomposition of dinitrogen oxide \left(\mathrm{N}_{2} \mathrm{O}\right) into nitrogen and oxygen reversible reaction takes place as follows\[2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\]The concentration of \mathrm{N}_{2} \mathrm{O} \mathrm{N}_{2} and \mathrm{O}_{2} are 1.1 \mathrm{~mol} \mathrm{dm}^{-3} 3.90 \mathrm{~mol} \mathrm{dm}^{-3} and 1.95 \mathrm{~mol} \mathrm{dm}^{-3} respectively at equilibrium. Find out \mathrm{K}_{\mathrm{c}} for this reaction.
1. For the decomposition of dinitrogen oxide  \left(\mathrm{N}_{2} \mathrm{O}\right)  into nitrogen and oxygen reversible reaction takes place as follows\[2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\]The concentration of  \mathrm{N}_{2} \mathrm{O} \mathrm{N}_{2}  and  \mathrm{O}_{2}  are  1.1 \mathrm{~mol} \mathrm{dm}^{-3} 3.90 \mathrm{~mol} \mathrm{dm}^{-3}  and  1.95 \mathrm{~mol} \mathrm{dm}^{-3}  respectively at equilibrium. Find out  \mathrm{K}_{\mathrm{c}}  for this reaction.

1. For the decomposition of dinitrogen oxide \left(\mathrm{N}_{2} \mathrm{O}\right) into nitrogen and oxygen reversible reaction takes place as follows\[2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\]The concentration of \mathrm{N}_{2} \mathrm{O} \mathrm{N}_{2} and \mathrm{O}_{2} are 1.1 \mathrm{~mol} \mathrm{dm}^{-3} 3.90 \mathrm{~mol} \mathrm{dm}^{-3} and 1.95 \mathrm{~mol} \mathrm{dm}^{-3} respectively at equilibrium. Find out \mathrm{K}_{\mathrm{c}} for this reaction.

11. Write note on :(ii) dynamic equilibrium
11. Write note on :(ii) dynamic equilibrium

11. Write note on :(ii) dynamic equilibrium

13. If reaction quotient Q_{c} of a reaction is more than K_{c} what will be the direction of the reaction?
13. If reaction quotient  Q_{c}  of a reaction is more than  K_{c}  what will be the direction of the reaction?

13. If reaction quotient Q_{c} of a reaction is more than K_{c} what will be the direction of the reaction?

Q15. Synthesis of ammonia by Habers process is an exothermic reaction.\[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \ddot{A} H=-92.46 \mathrm{~kJ}\](d) What happens to equilibrium position of this reaction if \mathrm{NH}_{3} is removed from the reaction vessel from time to time?
Q15. Synthesis of ammonia by Habers process is an exothermic reaction.\[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square  2 \mathrm{NH}_{3}(\mathrm{~g})   \ddot{A} H=-92.46 \mathrm{~kJ}\](d) What happens to equilibrium position of this reaction if  \mathrm{NH}_{3}  is removed from the reaction vessel from time to time?

Q15. Synthesis of ammonia by Habers process is an exothermic reaction.\[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \ddot{A} H=-92.46 \mathrm{~kJ}\](d) What happens to equilibrium position of this reaction if \mathrm{NH}_{3} is removed from the reaction vessel from time to time?

11. Write note on :(iii) K_{C} and K_{p^{*}}
11. Write note on :(iii)  K_{C}  and  K_{p^{*}}

11. Write note on :(iii) K_{C} and K_{p^{*}}

ii) Which statement about the following equilibrium is correct 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{SO}_{3}(\mathrm{~g}) \ddot{A} \mathrm{H}=-188.3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} (a) The value of K_{p} falls with a rise in temperature(b) The value of K_{p} falls with increasing pressure(c) Adding \mathrm{V}_{2} \mathrm{O}_{5} catalyst increase the equilibrium yield of sulphur trioxide(d) The value of K_{0} is equal to K_{\text {c. }} .
ii) Which statement about the following equilibrium is correct  2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{SO}_{3}(\mathrm{~g})   \ddot{A} \mathrm{H}=-188.3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} (a) The value of  K_{p}  falls with a rise in temperature(b) The value of  K_{p}  falls with increasing pressure(c) Adding  \mathrm{V}_{2} \mathrm{O}_{5}  catalyst increase the equilibrium yield of sulphur trioxide(d) The value of  K_{0}  is equal to  K_{\text {c. }} .

ii) Which statement about the following equilibrium is correct 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{SO}_{3}(\mathrm{~g}) \ddot{A} \mathrm{H}=-188.3 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} (a) The value of K_{p} falls with a rise in temperature(b) The value of K_{p} falls with increasing pressure(c) Adding \mathrm{V}_{2} \mathrm{O}_{5} catalyst increase the equilibrium yield of sulphur trioxide(d) The value of K_{0} is equal to K_{\text {c. }} .

Q16 Sulphuric acid is the king of chemicals. It is produced by the burning of \mathrm{SO}_{2} to \mathrm{SO}_{3} through an exothermic reversible process.(b) What is the effect of pressure change on this reaction?
Q16 Sulphuric acid is the king of chemicals. It is produced by the burning of  \mathrm{SO}_{2}  to  \mathrm{SO}_{3}  through an exothermic reversible process.(b) What is the effect of pressure change on this reaction?

Q16 Sulphuric acid is the king of chemicals. It is produced by the burning of \mathrm{SO}_{2} to \mathrm{SO}_{3} through an exothermic reversible process.(b) What is the effect of pressure change on this reaction?

10. State Le-Chateliers principle. What are its industrial applications?
10. State Le-Chateliers principle. What are its industrial applications?
now playing

10. State Le-Chateliers principle. What are its industrial applications?

Q17 (a) What are buffer solutions? Why do we need them in daily life?
Q17 (a) What are buffer solutions? Why do we need them in daily life?

Q17 (a) What are buffer solutions? Why do we need them in daily life?

9. At dynamic equilibriuma. the reaction stops to proceedb. the amounts of reactants and products are equalc. the speeds of the forward and reverse reactions are equald. the reaction can no longer be reversed
9. At dynamic equilibriuma. the reaction stops to proceedb. the amounts of reactants and products are equalc. the speeds of the forward and reverse reactions are equald. the reaction can no longer be reversed

9. At dynamic equilibriuma. the reaction stops to proceedb. the amounts of reactants and products are equalc. the speeds of the forward and reverse reactions are equald. the reaction can no longer be reversed

Q8 (a) Write down \mathrm{K}_{c} for the following reversible reactions. Suppose that the volume of reaction mixture in all the cases is V^{\prime \prime} \mathrm{dm}^{3} at equilibrium stage.V) \mathrm{N}_{2}+3 \mathrm{H}_{2} \square 2 \mathrm{NH}_{3}
Q8 (a) Write down  \mathrm{K}_{c}  for the following reversible reactions. Suppose that the volume of reaction mixture in all the cases is  V^{\prime \prime} \mathrm{dm}^{3}  at equilibrium stage.V)   \mathrm{N}_{2}+3 \mathrm{H}_{2} \square  2 \mathrm{NH}_{3}

Q8 (a) Write down \mathrm{K}_{c} for the following reversible reactions. Suppose that the volume of reaction mixture in all the cases is V^{\prime \prime} \mathrm{dm}^{3} at equilibrium stage.V) \mathrm{N}_{2}+3 \mathrm{H}_{2} \square 2 \mathrm{NH}_{3}

Q10 Explain the following with reasons.(c) The solubility of glucose in water is increased by increasing the temperature.
Q10 Explain the following with reasons.(c) The solubility of glucose in water is increased by increasing the temperature.

Q10 Explain the following with reasons.(c) The solubility of glucose in water is increased by increasing the temperature.

7. Consider the following equilibria:(i) 3 \mathrm{O}_{2(s)} \rightleftharpoons 2 \mathrm{O}_{3(s)} \Delta \mathrm{H}= positive(ii) \mathrm{H}_{2(s)}+\mathrm{I}_{2(s)} 2 \mathrm{HI}_{(\omega)} \Delta \mathrm{H}= positive(iii) 2 \mathrm{SO}_{2(3)} \cdot \mathrm{O}_{2(8)} \rightleftharpoons 2 \mathrm{SO}_{3(s)} \Delta \mathrm{H}= negative(b) In which direction will eachequilibrium change as the temperature is raised?
7. Consider the following equilibria:(i)  3 \mathrm{O}_{2(s)} \rightleftharpoons 2 \mathrm{O}_{3(s)}  \Delta \mathrm{H}=  positive(ii)  \mathrm{H}_{2(s)}+\mathrm{I}_{2(s)} 2 \mathrm{HI}_{(\omega)} \Delta \mathrm{H}=  positive(iii)  2 \mathrm{SO}_{2(3)} \cdot \mathrm{O}_{2(8)} \rightleftharpoons 2 \mathrm{SO}_{3(s)}  \Delta \mathrm{H}=  negative(b) In which direction will eachequilibrium change as the temperature is raised?

7. Consider the following equilibria:(i) 3 \mathrm{O}_{2(s)} \rightleftharpoons 2 \mathrm{O}_{3(s)} \Delta \mathrm{H}= positive(ii) \mathrm{H}_{2(s)}+\mathrm{I}_{2(s)} 2 \mathrm{HI}_{(\omega)} \Delta \mathrm{H}= positive(iii) 2 \mathrm{SO}_{2(3)} \cdot \mathrm{O}_{2(8)} \rightleftharpoons 2 \mathrm{SO}_{3(s)} \Delta \mathrm{H}= negative(b) In which direction will eachequilibrium change as the temperature is raised?

Q3. Label the sentences as True or False.i) When a reversible reaction attains equilibrium both reactants and products are present in a reaction mixture.ii) The K_{c} of the reaction\[\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}\]is given by\[\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}\]therefore it is assumed that\[[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=[\mathrm{D}]\]iii) A catalyst is a substance which increases the speed of the reaction and consequently increases the yield of the product.iv) Ionic product \mathrm{K}_{\mathrm{w}} of pure water at 25^{\circ} \mathrm{C} is 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} and is represented by an expression \mathrm{K}_{\mathrm{w}} =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} v) \mathrm{AgCl} is a sparingly soluble ionic solid in water. Its solution produces excess of \mathrm{Ag}^{+} and \mathrm{Cl}^{-} ions.
Q3. Label the sentences as True or False.i) When a reversible reaction attains equilibrium both reactants and products are present in a reaction mixture.ii) The  K_{c}  of the reaction\[\mathrm{A}+\mathrm{B} \square  \mathrm{C}+\mathrm{D}\]is given by\[\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}\]therefore it is assumed that\[[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=[\mathrm{D}]\]iii) A catalyst is a substance which increases the speed of the reaction and consequently increases the yield of the product.iv) Ionic product  \mathrm{K}_{\mathrm{w}}  of pure water at  25^{\circ} \mathrm{C}  is  10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}  and is represented by an expression  \mathrm{K}_{\mathrm{w}}   =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} v)  \mathrm{AgCl}  is a sparingly soluble ionic solid in water. Its solution produces excess of  \mathrm{Ag}^{+} and  \mathrm{Cl}^{-} ions.

Q3. Label the sentences as True or False.i) When a reversible reaction attains equilibrium both reactants and products are present in a reaction mixture.ii) The K_{c} of the reaction\[\mathrm{A}+\mathrm{B} \square \mathrm{C}+\mathrm{D}\]is given by\[\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}\]therefore it is assumed that\[[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=[\mathrm{D}]\]iii) A catalyst is a substance which increases the speed of the reaction and consequently increases the yield of the product.iv) Ionic product \mathrm{K}_{\mathrm{w}} of pure water at 25^{\circ} \mathrm{C} is 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} and is represented by an expression \mathrm{K}_{\mathrm{w}} =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6} v) \mathrm{AgCl} is a sparingly soluble ionic solid in water. Its solution produces excess of \mathrm{Ag}^{+} and \mathrm{Cl}^{-} ions.

7. Consider the following equilibria:(i) 3 \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{O}_{3(\alpha)} \Delta \mathrm{H}= positive(ii) \mathrm{H}_{2(s)} * \mathrm{I}_{2(\varepsilon)} 2 \mathrm{HI}{ }_{(\omega)} \Delta \mathrm{H}= positive(iii) 2 \mathrm{SO}_{2(s)} \cdot \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{SO}_{3(s)} \Delta \mathrm{H}= negative(c) Which of the equilibria will not be affected by change in total pressure?
7. Consider the following equilibria:(i)  3 \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{O}_{3(\alpha)}  \Delta \mathrm{H}=  positive(ii)  \mathrm{H}_{2(s)} * \mathrm{I}_{2(\varepsilon)} 2 \mathrm{HI}{ }_{(\omega)} \Delta \mathrm{H}=  positive(iii)  2 \mathrm{SO}_{2(s)} \cdot \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{SO}_{3(s)}  \Delta \mathrm{H}=  negative(c) Which of the equilibria will not be affected by change in total pressure?

7. Consider the following equilibria:(i) 3 \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{O}_{3(\alpha)} \Delta \mathrm{H}= positive(ii) \mathrm{H}_{2(s)} * \mathrm{I}_{2(\varepsilon)} 2 \mathrm{HI}{ }_{(\omega)} \Delta \mathrm{H}= positive(iii) 2 \mathrm{SO}_{2(s)} \cdot \mathrm{O}_{2(\varepsilon)} \rightleftharpoons 2 \mathrm{SO}_{3(s)} \Delta \mathrm{H}= negative(c) Which of the equilibria will not be affected by change in total pressure?

When hydrogen reacts with iodine at 25^{\circ} \mathrm{C} to form hydrogen iodide by a reversible reaction as follows:\[\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}\]The equilibrium concentrations are: \left[\mathrm{H}_{2}\right]=0.05 \mathrm{~mol} \mathrm{dm}^{-3} ; \left[\mathrm{I}_{2}\right]=0.06 \mathrm{~mol} \mathrm{dm}^{-3} ; and [\mathrm{HI}]=0.49 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant for this reaction.
When hydrogen reacts with iodine at  25^{\circ} \mathrm{C}  to form hydrogen iodide by a reversible reaction as follows:\[\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}  \rightleftharpoons  2 \mathrm{HI}_{(\mathrm{g})}\]The equilibrium concentrations are: \left[\mathrm{H}_{2}\right]=0.05 \mathrm{~mol} \mathrm{dm}^{-3} ; \left[\mathrm{I}_{2}\right]=0.06 \mathrm{~mol} \mathrm{dm}^{-3} ;   and  [\mathrm{HI}]=0.49 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant for this reaction.

When hydrogen reacts with iodine at 25^{\circ} \mathrm{C} to form hydrogen iodide by a reversible reaction as follows:\[\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{HI}_{(\mathrm{g})}\]The equilibrium concentrations are: \left[\mathrm{H}_{2}\right]=0.05 \mathrm{~mol} \mathrm{dm}^{-3} ; \left[\mathrm{I}_{2}\right]=0.06 \mathrm{~mol} \mathrm{dm}^{-3} ; and [\mathrm{HI}]=0.49 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant for this reaction.

(c) How do you calculate the solubility of a substance from the value of solubility product?
(c) How do you calculate the solubility of a substance from the value of solubility product?
video locked

(c) How do you calculate the solubility of a substance from the value of solubility product?

EXAMPLE 3. In a reaction A+B=2 C when equilibrium was attained the concentration was [A]=[B]=4 moles / \mathrm{dm}^{3}[C]=6 \mathrm{moles} / \mathrm{dm}^{3} . Calculate the equilibrium constant K_{c} and the initial concentrations of A and B .
EXAMPLE 3. In a reaction  A+B=2 C  when equilibrium was attained the concentration was  [A]=[B]=4  moles  / \mathrm{dm}^{3}[C]=6 \mathrm{moles} / \mathrm{dm}^{3} . Calculate the equilibrium constant  K_{c}  and the initial concentrations of  A  and  B .
video locked

EXAMPLE 3. In a reaction A+B=2 C when equilibrium was attained the concentration was [A]=[B]=4 moles / \mathrm{dm}^{3}[C]=6 \mathrm{moles} / \mathrm{dm}^{3} . Calculate the equilibrium constant K_{c} and the initial concentrations of A and B .

What is the importance of equilibrium constant?
What is the importance of equilibrium constant?
video locked

What is the importance of equilibrium constant?

v) An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ions in the filtrate?(a) \mathrm{Ag}^{+} and \mathrm{NO}_{3} only(b) \mathrm{Ag}^{+} and \mathrm{Ba}^{2+} and \mathrm{NO}_{3} -(c) \mathrm{Ba}^{2+} and \mathrm{NO}_{3} only(d) \mathrm{Ba}^{2+} and \mathrm{NO}_{3} and \mathrm{Cl}^{-}
v) An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ions in the filtrate?(a)  \mathrm{Ag}^{+} and  \mathrm{NO}_{3}  only(b)  \mathrm{Ag}^{+} and  \mathrm{Ba}^{2+}  and  \mathrm{NO}_{3}  -(c)  \mathrm{Ba}^{2+}  and  \mathrm{NO}_{3}  only(d)  \mathrm{Ba}^{2+}  and  \mathrm{NO}_{3}  and  \mathrm{Cl}^{-}
video locked

v) An excess of aqueous silver nitrate is added to aqueous barium chloride and precipitate is removed by filtration. What are the main ions in the filtrate?(a) \mathrm{Ag}^{+} and \mathrm{NO}_{3} only(b) \mathrm{Ag}^{+} and \mathrm{Ba}^{2+} and \mathrm{NO}_{3} -(c) \mathrm{Ba}^{2+} and \mathrm{NO}_{3} only(d) \mathrm{Ba}^{2+} and \mathrm{NO}_{3} and \mathrm{Cl}^{-}

(b) Why do the rates of forward reactions slow down when a reversible reaction approaches the equilibrium stage?
(b) Why do the rates of forward reactions slow down when a reversible reaction approaches the equilibrium stage?
video locked

(b) Why do the rates of forward reactions slow down when a reversible reaction approaches the equilibrium stage?

iii) The \mathrm{pH} of 10^{-3} \mathrm{~mol} \mathrm{dm} -3 of an aqueous solution of \mathrm{H}_{2} \mathrm{SO}_{4} is(a) 3.0 (b) 2.7 (c) 2.0 (d) 1.5
iii) The  \mathrm{pH}  of  10^{-3} \mathrm{~mol} \mathrm{dm} -3 of an aqueous solution of  \mathrm{H}_{2} \mathrm{SO}_{4}  is(a)  3.0 (b)  2.7 (c)  2.0 (d)  1.5
video locked

iii) The \mathrm{pH} of 10^{-3} \mathrm{~mol} \mathrm{dm} -3 of an aqueous solution of \mathrm{H}_{2} \mathrm{SO}_{4} is(a) 3.0 (b) 2.7 (c) 2.0 (d) 1.5

4. When nitrogen reacts with hydrogen to form ammonia the equilibrium mixture contains 0.31 \mathrm{~mol} \mathrm{dm}^{-3} and 0.50 \mathrm{~mol} \mathrm{dm}^{-3} of nitrogen and hydrogen respectively. If the \mathrm{K}_{\mathrm{c}} is 0.50 \mathrm{~mol}^{-} { }^{2} \mathrm{dm}^{6} what is the equilibrium concentration of ammonia?
4. When nitrogen reacts with hydrogen to form ammonia the equilibrium mixture contains  0.31 \mathrm{~mol} \mathrm{dm}^{-3}  and  0.50 \mathrm{~mol} \mathrm{dm}^{-3}  of nitrogen and hydrogen respectively. If the  \mathrm{K}_{\mathrm{c}}  is  0.50 \mathrm{~mol}^{-}   { }^{2} \mathrm{dm}^{6}  what is the equilibrium concentration of ammonia?
video locked

4. When nitrogen reacts with hydrogen to form ammonia the equilibrium mixture contains 0.31 \mathrm{~mol} \mathrm{dm}^{-3} and 0.50 \mathrm{~mol} \mathrm{dm}^{-3} of nitrogen and hydrogen respectively. If the \mathrm{K}_{\mathrm{c}} is 0.50 \mathrm{~mol}^{-} { }^{2} \mathrm{dm}^{6} what is the equilibrium concentration of ammonia?

Example 2: \mathrm{N}_{2}(\mathrm{~g}) and \mathrm{H}_{2} (g) combine to give \mathrm{NH}_{3}(\mathrm{~g}) . The value of \mathrm{K}_{\mathrm{c}} in this reaction at 500{ }^{\circ} \mathrm{C} is 6.0 \times 10^{-2} . Calculate the value of \mathrm{K}_{\mathrm{p}} for this reaction.
Example 2: \mathrm{N}_{2}(\mathrm{~g})  and  \mathrm{H}_{2}  (g) combine to give  \mathrm{NH}_{3}(\mathrm{~g}) . The value of  \mathrm{K}_{\mathrm{c}}  in this reaction at  500{ }^{\circ} \mathrm{C}  is  6.0 \times 10^{-2} .  Calculate the value of  \mathrm{K}_{\mathrm{p}}  for this reaction.
video locked

Example 2: \mathrm{N}_{2}(\mathrm{~g}) and \mathrm{H}_{2} (g) combine to give \mathrm{NH}_{3}(\mathrm{~g}) . The value of \mathrm{K}_{\mathrm{c}} in this reaction at 500{ }^{\circ} \mathrm{C} is 6.0 \times 10^{-2} . Calculate the value of \mathrm{K}_{\mathrm{p}} for this reaction.

Example:Calculate the \mathrm{pH} of a buffer solution in which 0.11 molar \mathrm{CH}_{3} \mathrm{COONa} and 0.09 molar acetic acid solutions are present. \mathrm{K}_{\mathrm{a}} for \mathrm{CH}_{3} \mathrm{COOH} is 1.85 \times 10^{-5}
Example:Calculate the  \mathrm{pH}  of a buffer solution in which  0.11  molar  \mathrm{CH}_{3} \mathrm{COONa}  and  0.09  molar acetic acid solutions are present.  \mathrm{K}_{\mathrm{a}}  for  \mathrm{CH}_{3} \mathrm{COOH}  is  1.85 \times 10^{-5}
video locked

Example:Calculate the \mathrm{pH} of a buffer solution in which 0.11 molar \mathrm{CH}_{3} \mathrm{COONa} and 0.09 molar acetic acid solutions are present. \mathrm{K}_{\mathrm{a}} for \mathrm{CH}_{3} \mathrm{COOH} is 1.85 \times 10^{-5}

15. "At equilibrium all processes come to a halt." What is wrong with this statement when applied to chemical systems?
15. "At equilibrium all processes come to a halt." What is wrong with this statement when applied to chemical systems?
video locked

15. "At equilibrium all processes come to a halt." What is wrong with this statement when applied to chemical systems?

2. Hydrogen iodide decomposes to form hydrogen and iodine. If the equilibrium concentration of \mathrm{HI} is 0.078 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} and \mathrm{I}_{2} is same 0.011 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant value for this reversible reaction:
2. Hydrogen iodide decomposes to form hydrogen and iodine. If the equilibrium concentration of  \mathrm{HI}  is  0.078 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2}  and  \mathrm{I}_{2}  is same  0.011 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant value for this reversible reaction:
video locked

2. Hydrogen iodide decomposes to form hydrogen and iodine. If the equilibrium concentration of \mathrm{HI} is 0.078 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} and \mathrm{I}_{2} is same 0.011 \mathrm{~mol} \mathrm{dm}^{-3} . Calculate the equilibrium constant value for this reversible reaction:

MDCAT/ ECAT question bank