# First Year Math Matrices and Determinants

Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

$Q.20 If A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] then adj A equals :(a) \left[\begin{array}{rr}d & b \\ -c & a\end{array}\right] (b) \left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right] (c) \left[\begin{array}{ll}d & b \\ c & a\end{array}\right] (d) \left[\begin{array}{rr}d & -b \\ c & a\end{array}\right] Gujranwala Board 2007$

$Evaluate the following determinants using their properties.8. \left|\begin{array}{lll}x & y & z \\ z & x & y \\ y & z & x\end{array}\right|$

$Evaluate the following determinants:6. \left|\begin{array}{lll}1 & 1 & \omega \\ 1 & 1 & \omega^{2} \\ \omega & \omega^{2} & 1\end{array}\right| where \omega is a complex cube root of unity.$

$17. Let \mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] \mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right] and C=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 8 \\ 2 & 7 & 6\end{array}\right] Show that :(V) \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}^{-7}=\pm=$

$(vi) Product of \left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right] is(a) [2 x+y] (b) [x-2 y] (c) [2 x-y] (d) [x+2 y]$

$Q.14 \left[\begin{array}{lll}0 & 0 & 0\end{array}\right] is(a) scalar matrix(b) diagonal matrix(c) identity matrix(d) null matrix$