Classes
Class 9Class 10First YearSecond Year
$A car of mass 1300 \mathrm{~kg} is constructed using a frame supported by four springs. Each spring has a spring constant 20000 \mathrm{~N} / \mathrm{m} . If two people riding in the car have a combined mass of 160 \mathrm{~kg} . find the frequency of vibration of the car when it is driven over a pothole in the road. Assume the weight is evenly distributed.$

$What happens to the period of simple pendulum if its length is doubled? What happens if the suspended mass is doubled?$

$A block of mass 1.6 \mathrm{~kg} is attached to a spring with spring constant 1000 \mathrm{Nm}^{-1} as shown in Fig. The spring is compressed through a distance of 2.0 \mathrm{~cm} and the block is released from rest.(i) through a distance of 2.0 \mathrm{~cm} and the block is released from rest. Calculate the velocity of the block as it passes thrions equilibrium position \mathrm{x}=0 if the surface is frictionless.$

$Show that in SHM the acceleration is zero when the velocity is greatest and the velocity is zero when the acceleration is greatest?$

$Explain the relation between total energy potential energy and kinetic energy for body oscillating with SHM.$

$Name two characteristics of simple harmonic motion.$

$A simple pendulum is 50.0 \mathrm{~cm} long. What will be its frequency of vibration at a place where \mathrm{g}=9.8 \mathrm{~ms} ?$