Classes
Second Year Math Functions and Limits
Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!
Class 9Class 10First YearSecond Year
Example 1: Determine whether \operatorname{Lim}_{x \rightarrow 2} f(x) and \operatorname{Lim}_{x \rightarrow 4} f(x) exist when\[f(x)=\left\{\begin{array}{rcc}2 x+1 & \text { if } & 0 \leq x \leq 2 \\7-x & \text { if } & 2 \leq x \leq 4 \\x & \text { if } & 4 \leq x \leq 6\end{array}\right.\]
4. Express each limit in terms of e :\[\text { (x) } \operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1} x<0\]
4. Express each limit in terms of e :\[\text { (x) } \operatorname{Lim}_{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1} x<0\]
Example 1: Determine whether \operatorname{Lim}_{x \rightarrow 2} f(x) and \operatorname{Lim}_{x \rightarrow 4} f(x) exist when\[f(x)=\left\{\begin{array}{rcc}2 x+1 & \text { if } & 0 \leq x \leq 2 \\7-x & \text { if } & 2 \leq x \leq 4 \\x & \text { if } & 4 \leq x \leq 6\end{array}\right.\]
Example 1: Determine whether \operatorname{Lim}_{x \rightarrow 2} f(x) and \operatorname{Lim}_{x \rightarrow 4} f(x) exist when\[f(x)=\left\{\begin{array}{rcc}2 x+1 & \text { if } & 0 \leq x \leq 2 \\7-x & \text { if } & 2 \leq x \leq 4 \\x & \text { if } & 4 \leq x \leq 6\end{array}\right.\]

