maqsad-logo

Classes


Change the way you learn with Maqsad's classes. Local examples, engaging animations, and instant video solutions keep you on your toes and make learning fun like never before!

Class 9Class 10First YearSecond Year
11. Find the scalar (area) of the triangle \mathrm{ABC} where \mathrm{A} \mathrm{B} \mathrm{C} are the ooints;(ii) A:(110) B:(2-12) C:(000) .
11. Find the scalar (area) of the triangle  \mathrm{ABC}  where  \mathrm{A} \mathrm{B} \mathrm{C}  are the ooints;(ii)  A:(110) B:(2-12) C:(000) .

11. Find the scalar (area) of the triangle \mathrm{ABC} where \mathrm{A} \mathrm{B} \mathrm{C} are the ooints;(ii) A:(110) B:(2-12) C:(000) .

Can the magnitude of a vector have a negative value?
Can the magnitude of a vector have a negative value?

Can the magnitude of a vector have a negative value?

7. Find the direction cosines of \overrightarrow{A B} in each of the five cases of question 4 . and then write \overline{A B} in the form\[r=r(\cos \alpha i+\cos \beta j+\cos \gamma k)\](iii) A\left(-\frac{1}{3} \frac{5}{3} 2\right) ; B\left(1-2 \frac{2}{3}\right)
7. Find the direction cosines of  \overrightarrow{A B}  in each of the five cases of question 4 . and then write  \overline{A B}  in the form\[r=r(\cos \alpha i+\cos \beta j+\cos \gamma k)\](iii)  A\left(-\frac{1}{3} \frac{5}{3} 2\right) ;  B\left(1-2 \frac{2}{3}\right)

7. Find the direction cosines of \overrightarrow{A B} in each of the five cases of question 4 . and then write \overline{A B} in the form\[r=r(\cos \alpha i+\cos \beta j+\cos \gamma k)\](iii) A\left(-\frac{1}{3} \frac{5}{3} 2\right) ; B\left(1-2 \frac{2}{3}\right)

5. If \underline{v} is a vector for which \underline{v} \underline{\underline{i}}=0 \underline{v} \cdot \underline{j}=0 \underline{v} \cdot \underline{k}=0 find \underline{v} .
5. If  \underline{v}  is a vector for which  \underline{v} \underline{\underline{i}}=0 \underline{v} \cdot \underline{j}=0 \underline{v} \cdot \underline{k}=0  find  \underline{v} .

5. If \underline{v} is a vector for which \underline{v} \underline{\underline{i}}=0 \underline{v} \cdot \underline{j}=0 \underline{v} \cdot \underline{k}=0 find \underline{v} .

7. If \underline{a}+\underline{b}+\underline{c}=0 then prove that \underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}
7. If  \underline{a}+\underline{b}+\underline{c}=0  then prove that  \underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}

7. If \underline{a}+\underline{b}+\underline{c}=0 then prove that \underline{a} \times \underline{b}=\underline{b} \times \underline{c}=\underline{c} \times \underline{a}

8. Prove that: \sin (\alpha-\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta .
8. Prove that:  \sin (\alpha-\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta .

8. Prove that: \sin (\alpha-\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta .