Maqsad logo
Maqsad logo

© Copyright 2021 Maqsad (Pvt.) Ltd. All Rights Reserved

Maqsad utilizes top-tier educators, media resources, and cutting-edge technology to develop education that is both high in quality and accessible, all while remaining affordable for students.

Google Play button

Download on

Google Play

Chrome button

Sign up

Chrome

Maqsad

MDCATECATBCATClass 9 NotesBlogSitemap

Socials

LinkedInYouTubeFacebookInstagram

Tools

Medical University PredictorMDCAT Aggregate CalculatorO Level Equivalence CalculatorA Level Equivalence Calculator

Our backers

Logo of Speed InvestLogo of Fatima Gobi VenturesLogo of Indus Valley CapitalLogo of Alter Global

Featured in

Bloomberg article featuring MaqsadTechCrunch article featuring MaqsadMenaBytes article featuring Maqsad
Class 9
Forward Chevron
Math
Forward Chevron
Congruent Triangles
Forward Chevron
Theorem 9.1.3 (SSS Postulate)

Congruent Triangles

Theorem 9.1.3 (SSS Postulate)

Math

Theorem 9.1.3: In a correspondence of two triangles, if three sides of one triangle are congruent to the corresponding three sides of the other, the two triangles are congruent.

Given: In △ABC↔△DEF\triangle ABC \leftrightarrow \triangle DEF△ABC↔△DEF AB‾≅DE‾\overline{AB} \cong \overline{DE}AB≅DE, BC‾≅EF‾\overline{BC} \cong \overline{EF}BC≅EF & CA‾≅FD‾\overline{CA} \cong \overline{FD}CA≅FD

To prove:
△ABC≅△DEF\triangle{ABC} \cong \triangle{DEF}△ABC≅△DEF

Construction: Suppose that BC‾\overline{BC}BC is the largest side of triangle △ABC\triangle ABC△ABC. Construct triangle △GEF\triangle GEF△GEF such that: i. Point GGG ii. ∠FEG≅∠B\angle FEG \cong \angle B∠FEG≅∠B iii. EG‾≅BA‾\overline{EG} \cong \overline{BA}EG≅BA

Then join D and G.

Proof:

Corollary: The angles of an equilateral triangle are equal in measurement.

Given: ΔABC\Delta ABCΔABC be an equilateral triangle. ∴AB‾=BC‾=CA‾∴\overline{AB} = \overline{BC} = \overline{CA}∴AB=BC=CA

To Prove: ∠A=∠B=∠C\angle A = \angle B = \angle C∠A=∠B=∠C

Construction: Draw bisector line from ∠A\angle A∠A to side BC‾\overline{BC}BC, a bisector line from ∠B\angle B∠B to side CA‾\overline{CA}CA

Proof:

Common Mistakes:

  • AAA (Angle-Angle-Angle) Postulate does not exist.