Maqsad logo

Logarithms

Application of laws of logarithm

Math

The laws of logarithm are used to solve complicated questions.

These are the four laws of logarithm

  • log<em>a(mn)=log</em>am+logan\log <em>a{(mn)}=\log </em>am+\log _an

  • log<em>a(mn)=log</em>amlogan\log <em>a{(\frac{m}{n})}=\log </em>am-\log _an

  • log<em>a(mn)=nlog</em>am\log <em>a{(m^n)}=n\log </em>am

  • log<em>a(n)=log</em>bnlogba\log <em>a{(n)}=\frac{\log </em>bn}{\log _ba}

Example#1

Find the value of 2391×30.7223.34\frac{2391\times30.72}{23.34} by using logarithm.

Solution:

  • First let the number equal to a variable Let; x=2391×30.7223.34x=\frac{2391\times30.72}{23.34}

  • Take log on both side

    logx=log(2391×30.7223.34)\log x=\log(\frac{2391\times30.72}{23.34})

  • Simplify divisions if there are any by using the logarithm law

                                         thereforeloga(fracxy)=logaxlogay\\therefore \\log_a(\\frac{x}{y})=\\log_a x -\\log_a y
    

    logx=log(2391×30.72)log(23.34)\log x=\log({2391\times30.72})-\log({23.34})

  • Simplify multiplications if there are any by using the logarithm law

                                        thereforeloga(xy)=loga(x)+loga(y)\\therefore \\log_a(xy)=\\log_a(x)+\\log_a(y)
    

    logx=log(2391)+log(30.72)log(23.34)\log x=\log(2391)+\log (30.72)-\log({23.34})

  • Use the log table to find the value of logarithm of numbers

    By referring to log table we have:

                                    thereforelog(2391)=3.3786\\therefore \\log(2391)=3.3786
    
                                    thereforelog(30.72)=1.4874\\therefore \\log(30.72)=1.4874
    
                                    thereforelog(23.34)=1.3681\\therefore \\log(23.34)=1.3681
    

logx=3.3786+1.48741.3681\log x=3.3786+1.4874-1.3681

  • Simplify

    logx=3.4979\log x=3.4979

  • Take anti log on both side

    antilog(logx)=antilog(3.4979)\text{antilog}( \log x)=\text{antilog}(3.4979)

  • Use antilog table to find the value of anti log of a number

                                     thereforetextantilog(logx)=x\\therefore \\text{antilog}( \\log x)=x
    

    antilog(3.4979)3147.023\text{antilog}(3.4979)\approx 3147.023

  • Put the value

    x3147.023x\approx 3147.023

  • Hence the answer of 2391×30.7223.34=3147.023\frac{2391\times30.72}{23.34}=3147.023