Maqsad logo

Quadratic Equations

Bi-quadratic equation reducible to quadratic form

Math

Examples

For example, solve the biquadratic equation: 12x411x2+2=012x^4 - 11x^2 + 2 = 0

Explanation:

Step 1: Recognize that this is a biquadratic equation of the form ax4+bx2+c=0ax^4 + bx^2 + c = 0, where a=12,b=11,a = 12, b = -11, and c=2c = 2.

Step 2: Substitute y=x2y = x^2 to obtain a quadratic equation in yy. This means we are using the substitution method to convert the biquadratic equation to a quadratic equation. Substituting y=x2y = x^2 gives:

12y211y+2=012y^2 - 11y + 2 = 0

Step 3: Solve the quadratic equation using the quadratic formula:

y=b±b24ac2ay = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

Plugging in a=12,b=11,a = 12, b = -11, and c=2c = 2, we get:

y=(11)±(11)24(12)(2))2(12)y=(11)±1219624y=(11)±2524</p><p>y=11±524y=1624;  624ory=23;  14y = \frac{-(-11) ± \sqrt{(-11)^2 - 4(12)(2))}} { 2(12)}\\ y = \frac{-(-11) ± \sqrt{121- 96}} { 24}\\ y = \frac{-(-11) ± \sqrt{25}} { 24}\\</p><p>y= \frac{11 ± 5 }{24}\\y= \frac{16 }{24}; \space \space \frac{6 }{24} \\ or\\y= \frac{2 }{3}; \space \space \frac{1}{4}

Therefore, y=23;  14y= \frac{2 }{3}; \space \space \frac{1}{4}

Step 4: Solve for xx using the values of yy found in Step 3. Remember that we substituted y=x2y = x^2 in Step 2, so we need to solve for xx using the values of yy found in Step 3. This gives:

y=x2x2=23y = x^2\\ \\ x^2 = \frac23 or x2=14x^2 = \frac14

Taking the square root of both sides, we get:

x=±23  or  x=±14x = ±\sqrt{\frac23}\space \space or \space \space x = ±\sqrt{\frac14}

Simplifying the roots, we get:

x=±63x = ±\frac{\sqrt{6}}3 or x=±12x = ±\frac12

Therefore, the four solutions to the equation 12x411x2+2=012x^4 - 11x^2 + 2 = 0 are x=63x = \frac{\sqrt{6}}3, x=63x = -\frac{\sqrt{6}}3, x=12x =\frac12, and x=12x = -\frac12.

Solution:

Given equation is 12x411x2+2=012x^4 -11x^2 + 2= 0, where a=12,b=11,a = 12, b = -11, and c=2c = 2.

Substitute y=x2y = x^2 to obtain a quadratic equation in yy:

12y211y+2=012y^2 - 11y + 2 = 0 Applying quadratic formula to above equation ****y=b±b24ac2ay = \frac{-b\pm\sqrt{b^2-4ac}}{2a}

Plugging in a=12,b=11,a = 12, b = -11, and c=2c = 2, we get:

y=(11)±(11)24(12)(2))2(12)y=(11)±1219624y=(11)±2524</p><p>y=11±524y=1624;  624ory=23;  14y = \frac{-(-11) ± \sqrt{(-11)^2 - 4(12)(2))}} { 2(12)}\\ y = \frac{-(-11) ± \sqrt{121- 96}} { 24}\\ y = \frac{-(-11) ± \sqrt{25}} { 24}\\</p><p>y= \frac{11 ± 5 }{24}\\y= \frac{16 }{24}; \space \space \frac{6 }{24} \\ or\\y= \frac{2 }{3}; \space \space \frac{1}{4}

Therefore, y=23;  14y= \frac{2 }{3}; \space \space \frac{1}{4}

Plugging in the values of yy in y=x2y = x^2 gives:

x2=23x^2 = \frac23 or x2=14x^2 = \frac14

Taking the square root of both sides, we get:

x=±23  or  x=±14x = ±\sqrt{\frac23}\space \space or \space \space x = ±\sqrt{\frac14}

Simplifying the roots, we get:

x=±63x = ±\frac{\sqrt{6}}3 or x=±12x = ±\frac12

Therefore, the four solutions to the equation 12x411x2+2=012x^4 - 11x^2 + 2 = 0 are x=63x = \frac{\sqrt{6}}3, x=63x = -\frac{\sqrt{6}}3, x=12x =\frac12, and x=12x = -\frac12.

Solution Set {12,12,63,63}\{\frac12, -\frac12, \frac{\sqrt{6}}3, -\frac{\sqrt{6}}3\}.