Maqsad logo
Maqsad logo

© Copyright 2021 Maqsad (Pvt.) Ltd. All Rights Reserved

Maqsad utilizes top-tier educators, media resources, and cutting-edge technology to develop education that is both high in quality and accessible, all while remaining affordable for students.

Google Play button

Download on

Google Play

Chrome button

Sign up

Chrome

Maqsad

MDCATECATBCATClass 9 NotesBlogSitemap

Socials

LinkedInYouTubeFacebookInstagram

Tools

Medical University PredictorMDCAT Aggregate CalculatorO Level Equivalence CalculatorA Level Equivalence Calculator

Our backers

Logo of Speed InvestLogo of Fatima Gobi VenturesLogo of Indus Valley CapitalLogo of Alter Global

Featured in

Bloomberg article featuring MaqsadTechCrunch article featuring MaqsadMenaBytes article featuring Maqsad
Class 9
Forward Chevron
Math
Forward Chevron
Quadratic Equations
Forward Chevron
Quadratic equation using completing square method

Quadratic Equations

Quadratic equation using completing square method

Math

Examples

As an example, let's solve the quadratic equation: 2x2+5x−3=02x² + 5x - 3 = 02x2+5x−3=0

Explanation:

  1. Write the equation in the form of ax2+bx+c=0ax² + bx + c = 0ax2+bx+c=0: 2x2+5x−3=02x² + 5x - 3 = 02x2+5x−3=0

  2. Divide the entire equation by 'a' i.e. 222: 22x2+52x−32=0x2+52x−32=0\frac22x² + \frac{5}{2}x - \frac32 = 0 \\ \\x² + \frac{5}{2}x - \frac32 = 022​x2+25​x−23​=0x2+25​x−23​=0

  3. Move the constant term −32-\frac32−23​ to the right-hand side: x2+52x=32x² + \frac52x = \frac32x2+25​x=23​

  4. Take half of the coefficient of xxx term and square it: 52×12=54\frac52 \times \frac12= \frac5425​×21​=45​

(54)2(\frac54)^2(45​)2 5. Complete the square by adding and subtracting (54)²(\frac54)^²(45​)² on the left-hand side: x2+52x+(54)2−(54)2=32x² + \frac52x + (\frac54)^2 - (\frac54)^2 = \frac32x2+25​x+(45​)2−(45​)2=23​ 6. Simplify the left-hand side of the equation:

(x+54)2−2516=32(x + \frac54)^2 - \frac{25}{16} = \frac32(x+45​)2−1625​=23​

(x+54)2=32+2516(x + \frac54)^2 = \frac32+ \frac{25}{16}(x+45​)2=23​+1625​

(x+54)2=4916(x + \frac54)^2 = \frac{49}{16}(x+45​)2=1649​ 7. Take the square root of both sides of the equation: (x+54)2=±4916\sqrt{(x + \frac54)^2} = \pm \sqrt{\frac{49}{16}}(x+45​)2​=±1649​​ On right side, square and root will be cancelled, (x+54)=±4916(x + \frac54) = \pm \sqrt{\frac{49}{16}}(x+45​)=±1649​​ 8. Solve for xxx:

(x+54)=±74(x + \frac54) = \pm \frac{7}{4}(x+45​)=±47​

x=−54±74x = - \frac54\pm \frac{7}{4}x=−45​±47​

x=−54+74x = - \frac54 + \frac{7}{4}x=−45​+47​ ; x=−54−74x = - \frac54- \frac{7}{4}x=−45​−47​

x=24x = \frac{2}{4}x=42​ ; x=−124x = - \frac{12}{4}x=−412​

x=12x = \frac{1}{2}x=21​ ; x=−3x = -3x=−3

Therefore, the solutions of the given quadratic equation are x=−3x = -3x=−3 and x=12x = \frac{1}{2}x=21​

Solution:

2x2+5x−3=02x² + 5x - 3 = 02x2+5x−3=0

22x2+52x−32=0x2+52x−32=0\frac22x² + \frac{5}{2}x - \frac32 = 0 \\ \\x² + \frac{5}{2}x - \frac32 = 022​x2+25​x−23​=0x2+25​x−23​=0

x2+52x=32x² + \frac52x = \frac32x2+25​x=23​

(52×12)2=(54)2(\frac52 \times \frac12)^2=( \frac54)^2(25​×21​)2=(45​)2

x2+52x+(54)2−(54)2=32x² + \frac52x + (\frac54)^2 - (\frac54)^2 = \frac32x2+25​x+(45​)2−(45​)2=23​

(x+54)2−2516=32(x + \frac54)^2 - \frac{25}{16} = \frac32(x+45​)2−1625​=23​

(x+54)2=32+2516(x + \frac54)^2 = \frac32+ \frac{25}{16}(x+45​)2=23​+1625​

(x+54)2=4916(x + \frac54)^2 = \frac{49}{16}(x+45​)2=1649​ taking square root on both sides (x+54)=±4916(x + \frac54) = \pm \sqrt{\frac{49}{16}}(x+45​)=±1649​​ solving for xxx (x+54)=±74(x + \frac54) = \pm \frac{7}{4}(x+45​)=±47​

x=−54±74x = - \frac54\pm \frac{7}{4}x=−45​±47​

x=−54+74x = - \frac54 + \frac{7}{4}x=−45​+47​ ; x=−54−74x = - \frac54- \frac{7}{4}x=−45​−47​

x=24x = \frac{2}{4}x=42​ ; x=−124x = - \frac{12}{4}x=−412​

x=12x = \frac{1}{2}x=21​ ; x=−3x = -3x=−3