Maqsad logo

Algebraic Manipulation

Operations on algebraic fractions

Math

Operations on Algebraic Fractions: Operations on algebraic fractions involve addition, subtraction, multiplication, and division of algebraic expressions in fraction form. Here are the steps to perform each operation:

Addition and Subtraction: The addition and subtraction of algebraic expressions can be calculated using the following steps. Consider the following example:

xx2+3x+2x1x21\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1}

Step 1: Find the LCM of all denominators.

Notice, x2+3x+2=(x+1)(x+2)x^2+3x+2 = (x+1)(x+2) x21=(x+1)(x1)x^2-1 = (x+1)(x-1)

For the LCM of x2+3x+2x^2+3x+2 and x21x^2-1, we have,

L.C.M = Product of Common Factors ×\times Product of Non Common Factors

The common factor is (x+1) only, and the factors that are not common are (x1)(x-1) and (x2)(x-2).

    L.C.M=(x+1)×(x1)(x+2)\implies \text{L.C.M} = (x+1)\times(x-1)(x+2)

                                        =(x+1)(x1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (x+1)(x-1)(x+2)

Step 2: Now divide the LCM by each denominator and multiply the quotient with the corresponding numerator, i.e.,

L.C.Mx2+3x+2=(x+1)(x1)(x+2)x2+3x+2=(x1)\frac{\text{L.C.M}}{x^2+3x+2} = \frac{(x+1)(x-1)(x+2)}{x^2+3x+2} = (x-1)

and,

L.C.Mx21=(x+1)(x1)(x+2)x21=(x+2)\frac{\text{L.C.M}}{x^2-1} = \frac{(x+1)(x-1)(x+2)}{x^2-1} = (x+2),

therefore,

xx2+3x+2x1x21=x(x1)(x1)(x+2)(x+1)(x1)(x+2)\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1} = \frac{x(x-1) - (x-1)(x+2)}{(x+1)(x-1)(x+2)}

Step 3: Simply the expression.

xx2+3x+2x1x21=x(x1)(x1)(x+2)(x+1)(x1)(x+2)\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1} = \frac{x(x-1) - (x-1)(x+2)}{(x+1)(x-1)(x+2)}

                                        =x2x(x2+x2)(x+1)(x1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2-x - (x^2+x-2)}{(x+1)(x-1)(x+2)}

                                        =x2xx2x+2(x+1)(x1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2-x -x^2-x+2}{(x+1)(x-1)(x+2)}

                                        =2x+2(x+1)(x1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2x+2}{(x+1)(x-1)(x+2)}

                                        =2(x1)(x+1)(x1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2(x-1)}{(x+1)(x-1)(x+2)}

                                        =2(x+1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2}{(x+1)(x+2)}

Hence the sum is 2(x+1)(x+2)\frac{-2}{(x+1)(x+2)}.

Multiplication of Algebraic Fractions:

Multiplication of algebraic expressions involves multiplying each term in one expression by each term in the other expression, but before canceling the common factors from the numerator and denominator.

Example: Simplify: ab2+2aab6+2b3a×b26b+9b3+2b\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b}

Solution:

ab2+2aab6+2b3a×b26b+9b3+2b=ab2+2aab+2b3a6×b26b+9b3+2b\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b} = \frac{ab^2+2a}{ab+2b-3a-6}\times \frac{b^2-6b+9}{b^3+2b}

Factorize the denominators of both fractions, i.e.,

                          =a(b2+2)b(a+2)3(a+2)×b22(b)(3)+32b(b2+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b^2+2)}{b(a+2)-3(a+2)}\times \frac{b^2-2(b)(3)+3^2}{b(b^2+2)}

                          =a(b2+2)(b3)(a+2)×(b3)2b(b2+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b^2+2)}{(b-3)(a+2)}\times \frac{(b-3)^2}{b(b^2+2)}

Canceling b2+2b^2+2 and b3b-3 from the numerator and denominator, we get,

                          =aa+2×b3b\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a}{a+2}\times \frac{b-3}{b}

                          =a(b3)b(a+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b-3)}{b(a+2)}

Thus, ab2+2aab6+2b3a×b26b+9b3+2b=a(b3)b(a+2)\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b}= \frac{a(b-3)}{b(a+2)}

Division of Algebraic Expression: In order to divide one expression with another, first change the division to multiplication by taking the reciprocal of the left-hand side term of division, and simply the multiplication.

Example: Simplify 1x29÷1x+3\frac{1}{x^2-9} \div \frac{1}{x+3}

Solution:

1x29÷1x+3=1x29×x+31\frac{1}{x^2-9} \div \frac{1}{x+3} = \frac{1}{x^2-9} \times \frac{x+3}{1}

                                    =1(x3)(x+3)×(x+3)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{(x-3)(x+3)} \times (x+3)

Cancelling (x+3)(x+3) in numerator and denominator, we get,

                                    =1x3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{x-3}

Thus, 1x29÷1x+3=1x3\frac{1}{x^2-9} \div \frac{1}{x+3}= \frac{1}{x-3}.