Maqsad logo
Maqsad logo

© Copyright 2021 Maqsad (Pvt.) Ltd. All Rights Reserved

Maqsad utilizes top-tier educators, media resources, and cutting-edge technology to develop education that is both high in quality and accessible, all while remaining affordable for students.

Google Play button

Download on

Google Play

Chrome button

Sign up

Chrome

Maqsad

MDCATECATBCATClass 9 NotesBlogSitemap

Socials

LinkedInYouTubeFacebookInstagram

Tools

Medical University PredictorMDCAT Aggregate CalculatorO Level Equivalence CalculatorA Level Equivalence Calculator

Our backers

Logo of Speed InvestLogo of Fatima Gobi VenturesLogo of Indus Valley CapitalLogo of Alter Global

Featured in

Bloomberg article featuring MaqsadTechCrunch article featuring MaqsadMenaBytes article featuring Maqsad
Class 9
Forward Chevron
Math
Forward Chevron
Algebraic Manipulation
Forward Chevron
Operations on algebraic fractions

Algebraic Manipulation

Operations on algebraic fractions

Math

Operations on Algebraic Fractions: Operations on algebraic fractions involve addition, subtraction, multiplication, and division of algebraic expressions in fraction form. Here are the steps to perform each operation:

Addition and Subtraction: The addition and subtraction of algebraic expressions can be calculated using the following steps. Consider the following example:

xx2+3x+2−x−1x2−1\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1}x2+3x+2x​−x2−1x−1​

Step 1: Find the LCM of all denominators.

Notice, x2+3x+2=(x+1)(x+2)x^2+3x+2 = (x+1)(x+2)x2+3x+2=(x+1)(x+2) x2−1=(x+1)(x−1)x^2-1 = (x+1)(x-1)x2−1=(x+1)(x−1)

For the LCM of x2+3x+2x^2+3x+2x2+3x+2 and x2−1x^2-1x2−1, we have,

L.C.M = Product of Common Factors ×\times× Product of Non Common Factors

The common factor is (x+1) only, and the factors that are not common are (x−1)(x-1)(x−1) and (x−2)(x-2)(x−2).

  ⟹  L.C.M=(x+1)×(x−1)(x+2)\implies \text{L.C.M} = (x+1)\times(x-1)(x+2)⟹L.C.M=(x+1)×(x−1)(x+2)

                                        =(x+1)(x−1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (x+1)(x-1)(x+2)=(x+1)(x−1)(x+2)

Step 2: Now divide the LCM by each denominator and multiply the quotient with the corresponding numerator, i.e.,

L.C.Mx2+3x+2=(x+1)(x−1)(x+2)x2+3x+2=(x−1)\frac{\text{L.C.M}}{x^2+3x+2} = \frac{(x+1)(x-1)(x+2)}{x^2+3x+2} = (x-1)x2+3x+2L.C.M​=x2+3x+2(x+1)(x−1)(x+2)​=(x−1)

and,

L.C.Mx2−1=(x+1)(x−1)(x+2)x2−1=(x+2)\frac{\text{L.C.M}}{x^2-1} = \frac{(x+1)(x-1)(x+2)}{x^2-1} = (x+2)x2−1L.C.M​=x2−1(x+1)(x−1)(x+2)​=(x+2),

therefore,

xx2+3x+2−x−1x2−1=x(x−1)−(x−1)(x+2)(x+1)(x−1)(x+2)\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1} = \frac{x(x-1) - (x-1)(x+2)}{(x+1)(x-1)(x+2)}x2+3x+2x​−x2−1x−1​=(x+1)(x−1)(x+2)x(x−1)−(x−1)(x+2)​

Step 3: Simply the expression.

xx2+3x+2−x−1x2−1=x(x−1)−(x−1)(x+2)(x+1)(x−1)(x+2)\frac{x}{x^2+3x+2} -\frac{x-1}{x^2-1} = \frac{x(x-1) - (x-1)(x+2)}{(x+1)(x-1)(x+2)}x2+3x+2x​−x2−1x−1​=(x+1)(x−1)(x+2)x(x−1)−(x−1)(x+2)​

                                        =x2−x−(x2+x−2)(x+1)(x−1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2-x - (x^2+x-2)}{(x+1)(x-1)(x+2)}=(x+1)(x−1)(x+2)x2−x−(x2+x−2)​

                                        =x2−x−x2−x+2(x+1)(x−1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{x^2-x -x^2-x+2}{(x+1)(x-1)(x+2)}=(x+1)(x−1)(x+2)x2−x−x2−x+2​

                                        =−2x+2(x+1)(x−1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2x+2}{(x+1)(x-1)(x+2)}=(x+1)(x−1)(x+2)−2x+2​

                                        =−2(x−1)(x+1)(x−1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2(x-1)}{(x+1)(x-1)(x+2)}=(x+1)(x−1)(x+2)−2(x−1)​

                                        =−2(x+1)(x+2)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{-2}{(x+1)(x+2)}=(x+1)(x+2)−2​

Hence the sum is −2(x+1)(x+2)\frac{-2}{(x+1)(x+2)}(x+1)(x+2)−2​.

Multiplication of Algebraic Fractions:

Multiplication of algebraic expressions involves multiplying each term in one expression by each term in the other expression, but before canceling the common factors from the numerator and denominator.

Example: Simplify: ab2+2aab−6+2b−3a×b2−6b+9b3+2b\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b}ab−6+2b−3aab2+2a​×b3+2bb2−6b+9​

Solution:

ab2+2aab−6+2b−3a×b2−6b+9b3+2b=ab2+2aab+2b−3a−6×b2−6b+9b3+2b\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b} = \frac{ab^2+2a}{ab+2b-3a-6}\times \frac{b^2-6b+9}{b^3+2b}ab−6+2b−3aab2+2a​×b3+2bb2−6b+9​=ab+2b−3a−6ab2+2a​×b3+2bb2−6b+9​

Factorize the denominators of both fractions, i.e.,

                          =a(b2+2)b(a+2)−3(a+2)×b2−2(b)(3)+32b(b2+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b^2+2)}{b(a+2)-3(a+2)}\times \frac{b^2-2(b)(3)+3^2}{b(b^2+2)}=b(a+2)−3(a+2)a(b2+2)​×b(b2+2)b2−2(b)(3)+32​

                          =a(b2+2)(b−3)(a+2)×(b−3)2b(b2+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b^2+2)}{(b-3)(a+2)}\times \frac{(b-3)^2}{b(b^2+2)}=(b−3)(a+2)a(b2+2)​×b(b2+2)(b−3)2​

Canceling b2+2b^2+2b2+2 and b−3b-3b−3 from the numerator and denominator, we get,

                          =aa+2×b−3b\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a}{a+2}\times \frac{b-3}{b}=a+2a​×bb−3​

                          =a(b−3)b(a+2)\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{a(b-3)}{b(a+2)}=b(a+2)a(b−3)​

Thus, ab2+2aab−6+2b−3a×b2−6b+9b3+2b=a(b−3)b(a+2)\frac{ab^2+2a}{ab-6+2b-3a}\times \frac{b^2-6b+9}{b^3+2b}= \frac{a(b-3)}{b(a+2)}ab−6+2b−3aab2+2a​×b3+2bb2−6b+9​=b(a+2)a(b−3)​

Division of Algebraic Expression: In order to divide one expression with another, first change the division to multiplication by taking the reciprocal of the left-hand side term of division, and simply the multiplication.

Example: Simplify 1x2−9÷1x+3\frac{1}{x^2-9} \div \frac{1}{x+3}x2−91​÷x+31​

Solution:

1x2−9÷1x+3=1x2−9×x+31\frac{1}{x^2-9} \div \frac{1}{x+3} = \frac{1}{x^2-9} \times \frac{x+3}{1}x2−91​÷x+31​=x2−91​×1x+3​

                                    =1(x−3)(x+3)×(x+3)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{(x-3)(x+3)} \times (x+3)=(x−3)(x+3)1​×(x+3)

Cancelling (x+3)(x+3)(x+3) in numerator and denominator, we get,

                                    =1x−3\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{1}{x-3}=x−31​

Thus, 1x2−9÷1x+3=1x−3\frac{1}{x^2-9} \div \frac{1}{x+3}= \frac{1}{x-3}x2−91​÷x+31​=x−31​.