Maqsad logo

Algebraic Manipulation

Square root of an algebraic expression

Math

Square root of algebraic expression by Factorization:

To find the square root of an algebraic expression by factorization, we need to factor the expression into its irreducible factors and then take the square root of each factor.

Example: Find the square root of 36(32x)248(32x)y+16y236(3-2x)^2 - 48(3-2x)y+16y^2.

Solution:

36(32x)248(32x)y+16y236(3-2x)^2 - 48(3-2x)y+16y^2

                                      =(6(32x))22(6(32x))(4y)+(4y)2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (6(3-2x))^2 -2(6(3-2x))(4y) + (4y)^2

Using, a22ab+b2=(ab)2a^2-2ab+b^2 = (a-b)^2, we get,

                                      =(6(32x)4y)2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (6(3-2x) - 4y)^2

                                      =(1812x4y)2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (18-12x - 4y)^2

Now taking square root on both sides, we get,

                                      =(1812x4y)2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= (18-12x - 4y)^2

                                      =(1812x4y)2\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{(18-12x - 4y)^2}

                                      =1812x4y\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= 18-12x - 4y

Hence, the square root of 36(32x)248(32x)y+16y236(3-2x)^2 - 48(3-2x)y+16y^2 is 1812x4y18-12x - 4y.

Square root of algebraic expression by Division Method: The procedure for calculating square root by division method is almost the same as of the numbers. Let's discuss it with the help of an example.

Example:

Find the square root of 9x4+12x3+4x29x^4 + 12x^3 + 4x^2 using the Division Method.

Solution:

Try to find a square of a term that equals 9x49x^4, which is 3x23x^2,

Now try to add something 3x23x^2 and multiply it with the same number to get 12x312 x^3,

Hence the square root of 9x4+12x3+4x29x^4 + 12x^3 + 4x^2 is 3x2+2x3x^2+2x.

Example: Find the square root of x22x+32x+1x2x^2-2x+3 - \frac{2}{x} + \frac{1}{x^2}.

Solution:

Thus the square root of x22x+32x+1x2x^2-2x+3 - \frac{2}{x} + \frac{1}{x^2} is x1+1xx-1 + \frac{1}{x}.