Maqsad logo
Class 9
Forward Chevron
Math
Forward Chevron
Logarithms
Forward Chevron
Application of laws of logarithm

Logarithms

Application of laws of logarithm

Math

The laws of logarithm are used to solve complicated questions.

These are the four laws of logarithm

  • log⁡<em>a(mn)=log⁡</em>am+log⁡an\log <em>a{(mn)}=\log </em>am+\log _anlog<em>a(mn)=log</em>am+loga​n

  • log⁡<em>a(mn)=log⁡</em>am−log⁡an\log <em>a{(\frac{m}{n})}=\log </em>am-\log _anlog<em>a(nm​)=log</em>am−loga​n

  • log⁡<em>a(mn)=nlog⁡</em>am\log <em>a{(m^n)}=n\log </em>amlog<em>a(mn)=nlog</em>am

  • log⁡<em>a(n)=log⁡</em>bnlog⁡ba\log <em>a{(n)}=\frac{\log </em>bn}{\log _ba}log<em>a(n)=logb​alog</em>bn​

Example#1

Find the value of 2391×30.7223.34\frac{2391\times30.72}{23.34}23.342391×30.72​ by using logarithm.

Solution:

  • First let the number equal to a variable Let; x=2391×30.7223.34x=\frac{2391\times30.72}{23.34}x=23.342391×30.72​

  • Take log on both side

    log⁡x=log⁡(2391×30.7223.34)\log x=\log(\frac{2391\times30.72}{23.34})logx=log(23.342391×30.72​)

  • Simplify divisions if there are any by using the logarithm law

                                         thereforeloga(fracxy)=logax−logay\\therefore \\log_a(\\frac{x}{y})=\\log_a x -\\log_a ythereforeloga​(fracxy)=loga​x−loga​y
    

    log⁡x=log⁡(2391×30.72)−log⁡(23.34)\log x=\log({2391\times30.72})-\log({23.34})logx=log(2391×30.72)−log(23.34)

  • Simplify multiplications if there are any by using the logarithm law

                                        thereforeloga(xy)=loga(x)+loga(y)\\therefore \\log_a(xy)=\\log_a(x)+\\log_a(y)thereforeloga​(xy)=loga​(x)+loga​(y)
    

    log⁡x=log⁡(2391)+log⁡(30.72)−log⁡(23.34)\log x=\log(2391)+\log (30.72)-\log({23.34})logx=log(2391)+log(30.72)−log(23.34)

  • Use the log table to find the value of logarithm of numbers

    By referring to log table we have:

                                    thereforelog(2391)=3.3786\\therefore \\log(2391)=3.3786thereforelog(2391)=3.3786
    
                                    thereforelog(30.72)=1.4874\\therefore \\log(30.72)=1.4874thereforelog(30.72)=1.4874
    
                                    thereforelog(23.34)=1.3681\\therefore \\log(23.34)=1.3681thereforelog(23.34)=1.3681
    

log⁡x=3.3786+1.4874−1.3681\log x=3.3786+1.4874-1.3681logx=3.3786+1.4874−1.3681

  • Simplify

    log⁡x=3.4979\log x=3.4979logx=3.4979

  • Take anti log on both side

    antilog(log⁡x)=antilog(3.4979)\text{antilog}( \log x)=\text{antilog}(3.4979)antilog(logx)=antilog(3.4979)

  • Use antilog table to find the value of anti log of a number

                                     thereforetextantilog(logx)=x\\therefore \\text{antilog}( \\log x)=xthereforetextantilog(logx)=x
    

    antilog(3.4979)≈3147.023\text{antilog}(3.4979)\approx 3147.023antilog(3.4979)≈3147.023

  • Put the value

    x≈3147.023x\approx 3147.023x≈3147.023

  • Hence the answer of 2391×30.7223.34=3147.023\frac{2391\times30.72}{23.34}=3147.02323.342391×30.72​=3147.023

Maqsad logo

© Copyright 2021 Maqsad (Pvt.) Ltd. All Rights Reserved

Maqsad utilizes top-tier educators, media resources, and cutting-edge technology to develop education that is both high in quality and accessible, all while remaining affordable for students.

Google Play button

Download on

Google Play

Chrome button

Sign up

Chrome

Maqsad

MDCATECATBCATClass 9 NotesBlogSitemap

Socials

LinkedInYouTubeFacebookInstagram

Tools

Medical University PredictorMDCAT Aggregate CalculatorO Level Equivalence CalculatorA Level Equivalence Calculator

Our backers

Logo of Speed InvestLogo of Fatima Gobi VenturesLogo of Indus Valley CapitalLogo of Alter Global

Featured in

Bloomberg article featuring MaqsadTechCrunch article featuring MaqsadMenaBytes article featuring Maqsad