Maqsad logo

Logarithms

Logarithms

Math

If an exponential equation is ax=ya^{x}=y, then xx is called logarithm of yy to the base of aa and is written as loga(y)=x\log_a(y)=x. Here, x=Power / Exponentx = \text{Power / Exponent}

y=Given numbery = \text{Given number} a=Basea = \text{Base}

Example#1:

34=1813^{-4}=\frac{1}{81} this is an exponential form to write it in Logarithmic form simply use the expression ax=ya^{x}=y \leftrightarrow logay=x\log_{a}{y}=x

Here; a=3,x=4 and y=181a=3, x= -4 \text{ and } y = \frac{1}{81}

now put it in the other side

log3(181)=4\log_{3}({\frac{1}{81})}=-4

Example#2:

Find the value of log4(2)\log_4(2)

Solution:

  • First let the log equal to a variable,

    log4(2)=x\log_4(2)=x

  • Convert it into exponential form

    4x=24^{x}=2

  • Solve the exponential form

    22x=22^{2x}=2

  • use the basic method of Base same powers equal

    2x=12x=1

    x=12x=\frac{1}{2}

  • So the answer of log4(2)=12\log_4(2)=\frac{1}{2}

Example#3:

Find the value of x if log64(x)=23\log_{64}(x)=\frac{-2}{3}

Solution:

  • Convert the log form into exponential form

    6423=x64^{\frac{-2}{3}}=x

  • Solve the exponential form

    (43)23=x(4^3)^{\frac{-2}{3}}=x

    (4)2=x(4)^{-2}=x

    116=x{\frac{1}{16}}=x

  • So the value of xx in log64(x)=23\log_{64}(x)=\frac{-2}{3} is 116\frac{1}{16}