Maqsad logo
Maqsad logo

© Copyright 2021 Maqsad (Pvt.) Ltd. All Rights Reserved

Maqsad utilizes top-tier educators, media resources, and cutting-edge technology to develop education that is both high in quality and accessible, all while remaining affordable for students.

Google Play button

Download on

Google Play

Chrome button

Sign up

Chrome

Maqsad

MDCATECATBCATClass 9 NotesBlogSitemap

Socials

LinkedInYouTubeFacebookInstagram

Tools

Medical University PredictorMDCAT Aggregate CalculatorO Level Equivalence CalculatorA Level Equivalence Calculator

Our backers

Logo of Speed InvestLogo of Fatima Gobi VenturesLogo of Indus Valley CapitalLogo of Alter Global

Featured in

Bloomberg article featuring MaqsadTechCrunch article featuring MaqsadMenaBytes article featuring Maqsad
Class 9
Forward Chevron
Math
Forward Chevron
Quadratic Equations
Forward Chevron
Bi-quadratic equation reducible to quadratic form

Quadratic Equations

Bi-quadratic equation reducible to quadratic form

Math

Examples

For example, solve the biquadratic equation: 12x4−11x2+2=012x^4 - 11x^2 + 2 = 012x4−11x2+2=0

Explanation:

Step 1: Recognize that this is a biquadratic equation of the form ax4+bx2+c=0ax^4 + bx^2 + c = 0ax4+bx2+c=0, where a=12,b=−11,a = 12, b = -11,a=12,b=−11, and c=2c = 2c=2.

Step 2: Substitute y=x2y = x^2y=x2 to obtain a quadratic equation in yyy. This means we are using the substitution method to convert the biquadratic equation to a quadratic equation. Substituting y=x2y = x^2y=x2 gives:

12y2−11y+2=012y^2 - 11y + 2 = 012y2−11y+2=0

Step 3: Solve the quadratic equation using the quadratic formula:

y=−b±b2−4ac2ay = \frac{-b\pm\sqrt{b^2-4ac}}{2a}y=2a−b±b2−4ac​​

Plugging in a=12,b=−11,a = 12, b = -11,a=12,b=−11, and c=2c = 2c=2, we get:

y=−(−11)±(−11)2−4(12)(2))2(12)y=−(−11)±121−9624y=−(−11)±2524</p><p>y=11±524y=1624;  624ory=23;  14y = \frac{-(-11) ± \sqrt{(-11)^2 - 4(12)(2))}} { 2(12)}\\ y = \frac{-(-11) ± \sqrt{121- 96}} { 24}\\ y = \frac{-(-11) ± \sqrt{25}} { 24}\\</p><p>y= \frac{11 ± 5 }{24}\\y= \frac{16 }{24}; \space \space \frac{6 }{24} \\ or\\y= \frac{2 }{3}; \space \space \frac{1}{4}y=2(12)−(−11)±(−11)2−4(12)(2))​​y=24−(−11)±121−96​​y=24−(−11)±25​​</p><p>y=2411±5​y=2416​;  246​ory=32​;  41​

Therefore, y=23;  14y= \frac{2 }{3}; \space \space \frac{1}{4}y=32​;  41​

Step 4: Solve for xxx using the values of yyy found in Step 3. Remember that we substituted y=x2y = x^2y=x2 in Step 2, so we need to solve for xxx using the values of yyy found in Step 3. This gives:

y=x2x2=23y = x^2\\ \\ x^2 = \frac23y=x2x2=32​ or x2=14x^2 = \frac14x2=41​

Taking the square root of both sides, we get:

x=±23  or  x=±14x = ±\sqrt{\frac23}\space \space or \space \space x = ±\sqrt{\frac14}x=±32​​  or  x=±41​​

Simplifying the roots, we get:

x=±63x = ±\frac{\sqrt{6}}3x=±36​​ or x=±12x = ±\frac12x=±21​

Therefore, the four solutions to the equation 12x4−11x2+2=012x^4 - 11x^2 + 2 = 012x4−11x2+2=0 are x=63x = \frac{\sqrt{6}}3x=36​​, x=−63x = -\frac{\sqrt{6}}3x=−36​​, x=12x =\frac12x=21​, and x=−12x = -\frac12x=−21​.

Solution:

Given equation is 12x4−11x2+2=012x^4 -11x^2 + 2= 012x4−11x2+2=0, where a=12,b=−11,a = 12, b = -11,a=12,b=−11, and c=2c = 2c=2.

Substitute y=x2y = x^2y=x2 to obtain a quadratic equation in yyy:

12y2−11y+2=012y^2 - 11y + 2 = 012y2−11y+2=0 Applying quadratic formula to above equation ****y=−b±b2−4ac2ay = \frac{-b\pm\sqrt{b^2-4ac}}{2a}y=2a−b±b2−4ac​​

Plugging in a=12,b=−11,a = 12, b = -11,a=12,b=−11, and c=2c = 2c=2, we get:

y=−(−11)±(−11)2−4(12)(2))2(12)y=−(−11)±121−9624y=−(−11)±2524</p><p>y=11±524y=1624;  624ory=23;  14y = \frac{-(-11) ± \sqrt{(-11)^2 - 4(12)(2))}} { 2(12)}\\ y = \frac{-(-11) ± \sqrt{121- 96}} { 24}\\ y = \frac{-(-11) ± \sqrt{25}} { 24}\\</p><p>y= \frac{11 ± 5 }{24}\\y= \frac{16 }{24}; \space \space \frac{6 }{24} \\ or\\y= \frac{2 }{3}; \space \space \frac{1}{4}y=2(12)−(−11)±(−11)2−4(12)(2))​​y=24−(−11)±121−96​​y=24−(−11)±25​​</p><p>y=2411±5​y=2416​;  246​ory=32​;  41​

Therefore, y=23;  14y= \frac{2 }{3}; \space \space \frac{1}{4}y=32​;  41​

Plugging in the values of yyy in y=x2y = x^2y=x2 gives:

x2=23x^2 = \frac23x2=32​ or x2=14x^2 = \frac14x2=41​

Taking the square root of both sides, we get:

x=±23  or  x=±14x = ±\sqrt{\frac23}\space \space or \space \space x = ±\sqrt{\frac14}x=±32​​  or  x=±41​​

Simplifying the roots, we get:

x=±63x = ±\frac{\sqrt{6}}3x=±36​​ or x=±12x = ±\frac12x=±21​

Therefore, the four solutions to the equation 12x4−11x2+2=012x^4 - 11x^2 + 2 = 012x4−11x2+2=0 are x=63x = \frac{\sqrt{6}}3x=36​​, x=−63x = -\frac{\sqrt{6}}3x=−36​​, x=12x =\frac12x=21​, and x=−12x = -\frac12x=−21​.

Solution Set {12,−12,63,−63}\{\frac12, -\frac12, \frac{\sqrt{6}}3, -\frac{\sqrt{6}}3\}{21​,−21​,36​​,−36​​}.