Maqsad logo

Quadratic Equations

Exponential equation reducible to quadratic form

Math

Examples

Here's an example of solving a quadratic equation using the quadratic formula. Solve the equation: 5x+1+52x=53+15^{x+1}+5^{2-x}=5^3+1

Explanation:

Given equation: 5x+1+52x=53+15^{x+1}+5^{2-x}=5^3+1

Step 1: Simplify the left-hand side by combining like terms:

5x+1+52x=125+15^{x+1}+5^{2-x}=125+1

5x+1+52x=1265^{x+1}+5^{2-x}=126

Step 2: Write the powers of 55 in a common base, which is 55, and simplify:

55x+5x52=1265 \cdot 5^x + 5^{-x} \cdot 5^2 = 126

5x+1+52x=1265^{x+1} + 5^{2-x} = 126

Step 3: Let y=5xy=5^x to get a quadratic equation in terms of yy:

5y+25y=1265y + \frac{25}{y} = 126

Multiplying both sides by yy gives:

5y2+25=126y5y^2 + 25 = 126y

5y2126y+25=05y^2 - 126y + 25 = 0

Step 4: Factor the quadratic equation or quadratic formula can be applied:

5y2126y+25=(5y1)(y25)=05y^2 - 126y + 25 = (5y-1)(y-25) = 0

Step 5: Solve for yy by setting each factor equal to zero:

5y1=0 or y25=05y-1=0 \space or \space y-25=0

y=15y=\frac{1}{5} or y=25y=25

Step 6: Substitute back 5x5^x for yy and solve for xx:

5x=155^x=\frac{1}{5} or 5x=255^x=25

5x=515^x=5^{-1} or 5x=525^x=5^2

x=1x=-1 or x=2x=2

Step 7: Check the solutions:

Substituting x=1x=-1 into the original equation, we get:

5(1)+1+52(1)=53+15^{(-1)+1} + 5^{2-(-1)} = 5^3+1

50+53=125+15^0 + 5^3 = 125+1

1+125=1261 + 125 = 126

The left-hand side equals the right-hand side, so x=1x=-1 is a valid solution.

Substituting x=2x=2 into the original equation, we get:

5(2)+1+52(2)=53+15^{(2)+1} + 5^{2-(2)} = 5^3+1

53+50=125+15^3 + 5^0 = 125+1

125+1=126125 + 1 = 126

The left-hand side equals the right-hand side, so x=2x=2 is also a valid solution.

Solution:

5x+1+52x=53+15^{x+1}+5^{2-x}=5^3+1

5x+1+52x=125+15^{x+1}+5^{2-x}=125+1 5x+1+52x=1265^{x+1}+5^{2-x}=126 51.5x+52.5x=1265^1.5^x+5^2.5^{-x}=126 51.5x+525x=1265^1.5^x+\frac{5^2}{5^{x}}=126

Let 5x=y5^x=y 5y+25y=1265y+\frac{25}{y}=126 5y2+25yy=126y5y^2+\frac{25y}{y}=126y 5y2126y+25=05y^2-126y+25=0

Here, a=5,b=126,a = 5, b = -126, and c=25c = 25 Quadratic Formula: x=b±b24ac2ax= \frac{-b\pm\sqrt{b^2-4ac}}{2a}

Substitute the values of a,b,a, b, and cc in the quadratic formula:

y=(126)±(126)24(5)(25)2(5)y=\frac{-(-126)\pm\sqrt{(-126)^2-4(5)(25)}}{2(5)}

Simplifying: y=126±1587650010y=\frac{126\pm\sqrt{15876-500}}{10}

y=126±1537610y=\frac{126\pm\sqrt{15376}}{10}

y=126±12410y=\frac{126\pm124}{10} y=25010y=\frac{250}{10}; y=210y=\frac{2}{10}\\y=25y=25 ; y=15y=\frac{1}{5}

Substituting back y=5xy=5^x:

5x=255^x=25 or 5x=155^x=\frac15

5x=525^x=5^2 or 5x=515^x=5^{-1}

x=2x=2 or x=1x=-1

Therefore, the solutions to the equation 5x+1+52x=53+15^{x+1}+5^{2-x}=5^3+1 are

x=2x = 2 and x=1x= -1

The solution set of the quadratic equation is {2,1}\{2,-1\}