Maqsad logo

Quadratic Equations

Quadratic equation using completing square method

Math

Examples

As an example, let's solve the quadratic equation: 2x2+5x3=02x² + 5x - 3 = 0

Explanation:

  1. Write the equation in the form of ax2+bx+c=0ax² + bx + c = 0: 2x2+5x3=02x² + 5x - 3 = 0

  2. Divide the entire equation by 'a' i.e. 22: 22x2+52x32=0x2+52x32=0\frac22x² + \frac{5}{2}x - \frac32 = 0 \\ \\x² + \frac{5}{2}x - \frac32 = 0

  3. Move the constant term 32-\frac32 to the right-hand side: x2+52x=32x² + \frac52x = \frac32

  4. Take half of the coefficient of xx term and square it: 52×12=54\frac52 \times \frac12= \frac54

(54)2(\frac54)^2 5. Complete the square by adding and subtracting (54)²(\frac54)^² on the left-hand side: x2+52x+(54)2(54)2=32x² + \frac52x + (\frac54)^2 - (\frac54)^2 = \frac32 6. Simplify the left-hand side of the equation:

(x+54)22516=32(x + \frac54)^2 - \frac{25}{16} = \frac32

(x+54)2=32+2516(x + \frac54)^2 = \frac32+ \frac{25}{16}

(x+54)2=4916(x + \frac54)^2 = \frac{49}{16} 7. Take the square root of both sides of the equation: (x+54)2=±4916\sqrt{(x + \frac54)^2} = \pm \sqrt{\frac{49}{16}} On right side, square and root will be cancelled, (x+54)=±4916(x + \frac54) = \pm \sqrt{\frac{49}{16}} 8. Solve for xx:

(x+54)=±74(x + \frac54) = \pm \frac{7}{4}

x=54±74x = - \frac54\pm \frac{7}{4}

x=54+74x = - \frac54 + \frac{7}{4} ; x=5474x = - \frac54- \frac{7}{4}

x=24x = \frac{2}{4} ; x=124x = - \frac{12}{4}

x=12x = \frac{1}{2} ; x=3x = -3

Therefore, the solutions of the given quadratic equation are x=3x = -3 and x=12x = \frac{1}{2}

Solution:

2x2+5x3=02x² + 5x - 3 = 0

22x2+52x32=0x2+52x32=0\frac22x² + \frac{5}{2}x - \frac32 = 0 \\ \\x² + \frac{5}{2}x - \frac32 = 0

x2+52x=32x² + \frac52x = \frac32

(52×12)2=(54)2(\frac52 \times \frac12)^2=( \frac54)^2

x2+52x+(54)2(54)2=32x² + \frac52x + (\frac54)^2 - (\frac54)^2 = \frac32

(x+54)22516=32(x + \frac54)^2 - \frac{25}{16} = \frac32

(x+54)2=32+2516(x + \frac54)^2 = \frac32+ \frac{25}{16}

(x+54)2=4916(x + \frac54)^2 = \frac{49}{16} taking square root on both sides (x+54)=±4916(x + \frac54) = \pm \sqrt{\frac{49}{16}} solving for xx (x+54)=±74(x + \frac54) = \pm \frac{7}{4}

x=54±74x = - \frac54\pm \frac{7}{4}

x=54+74x = - \frac54 + \frac{7}{4} ; x=5474x = - \frac54- \frac{7}{4}

x=24x = \frac{2}{4} ; x=124x = - \frac{12}{4}

x=12x = \frac{1}{2} ; x=3x = -3