Maqsad logo

Quadratic Equations

Quadratic equation using quadratic formula

Math

Examples

Here's an example of solving a quadratic equation using the quadratic formula. Solve the equation: 2x2+3x5=02x^2 + 3x - 5 = 0

Explanation:

Step 1: Write the equation in standard form: 2x2+3x5=02x^2 + 3x - 5 = 0

Step 2: Identify the values of a,b,a, b, and cc:

a=2,b=3,a = 2, b = 3, and c=5c = -5

Step 3: Substitute the values of a,b,a, b, and cc in the quadratic formula:

x=b±b24ac2ax= \frac{-b\pm\sqrt{b^2-4ac}}{2a}

x=3±(3)24(2)(5)2(2)x = \frac{-3 \pm\sqrt{(3)^2 - 4(2)(-5)}} { 2(2)}

Step 4: Simplify the expression inside the square root: (3)24(2)(5)=9+40=49(3)^2 - 4(2)(-5) = 9 + 40 = 49

Step 5: Since the expression inside the square root is positive, the quadratic equation has real solutions.

x=3±492(2)x = \frac{-3 \pm\sqrt{49} }{ 2(2)}

Step 6: Simplify the expression inside the square root by finding its square root: 49=7\sqrt{49} = 7

x=3±74x = \frac{-3 \pm7 }{ 4}

Step 7: Solving for xx to get the two possible solutions for the quadratic equation:

x=(3+7)4x = \frac{(-3 + 7)} 4 or x=(37)4x = \frac{(-3 - 7)} 4

Simplifying the solutions:

x=44x = \frac{4} 4 or x=104x = \frac{-10} 4

x=1x=1 or x=52x = \frac{-5} 2

Step 8: The solutions to the quadratic equation are x=1x = 1 and x=52x = \frac{-5} 2

Solution:

2x2+3x5=02x^2 + 3x - 5 = 0

Here, a=2,b=3,a = 2, b = 3, and c=5c = -5 Quadratic Formula: x=b±b24ac2ax= \frac{-b\pm\sqrt{b^2-4ac}}{2a}

Substitute the values of a,b,a, b, and cc in the quadratic formula:

x=3±(3)24(2)(5)2(2)x = \frac{-3 \pm\sqrt{(3)^2 - 4(2)(-5)}} { 2(2)} x=3±9+402(2)x = \frac{-3 \pm\sqrt{9 + 40}} { 2(2)}

x=3±492(2)x = \frac{-3 \pm\sqrt{49} }{ 2(2)} x=3±74x = \frac{-3 \pm7 }{ 4}

x=(3+7)4x = \frac{(-3 + 7)} 4 or x=(37)4x = \frac{(-3 - 7)} 4 x=44x = \frac{4} 4 or x=104x = \frac{-10} 4

x=1x=1 or x=52x = \frac{-5} 2

The solution set of the quadratic equation is {1,52}\{1, -\frac52\}