Examples
Here's an example of solving a quadratic equation using the quadratic formula. Solve the equation: 2x2+3x−5=0
Explanation:
Step 1: Write the equation in standard form: 2x2+3x−5=0
Step 2: Identify the values of a,b, and c:
a=2,b=3, and c=−5
Step 3: Substitute the values of a,b, and c in the quadratic formula:
x=2a−b±b2−4ac
x=2(2)−3±(3)2−4(2)(−5)
Step 4: Simplify the expression inside the square root: (3)2−4(2)(−5)=9+40=49
Step 5: Since the expression inside the square root is positive, the quadratic equation has real solutions.
x=2(2)−3±49
Step 6: Simplify the expression inside the square root by finding its square root: 49=7
x=4−3±7
Step 7: Solving for x to get the two possible solutions for the quadratic equation:
x=4(−3+7) or x=4(−3−7)
Simplifying the solutions:
x=44 or x=4−10
x=1 or x=2−5
Step 8: The solutions to the quadratic equation are x=1 and x=2−5
Solution:
2x2+3x−5=0
Here, a=2,b=3, and c=−5 Quadratic Formula: x=2a−b±b2−4ac
Substitute the values of a,b, and c in the quadratic formula:
x=2(2)−3±(3)2−4(2)(−5) x=2(2)−3±9+40
x=2(2)−3±49 x=4−3±7
x=4(−3+7) or x=4(−3−7) x=44 or x=4−10
x=1 or x=2−5
The solution set of the quadratic equation is {1,−25}