Maqsad logo

Quadratic Equations

Solving equation reducible to quadratic form

Math

Examples

Here's an example of solving a quadratic equation of the form ap(x)+bp(x)=cap(x)+\frac b{p(x)}=c where a,ba,b and cc are real numbers, a0a≠0 and p(x)p(x) is an algebraic expression .

Solve the equation: 2(xx+1)25(xx+1)+2=x12(\frac x{x+1})^2-5(\frac x{x+1})+2 = x\neq -1

Explanation:

Given equation: 2(xx+1)25(xx+1)+2=x12(\frac x{x+1})^2-5(\frac x{x+1})+2 = x\neq -1

Step 1: Let (xx+1)=y(\frac x{x+1})=y

to get a quadratic equation in terms of yy: 2(y)25(y)+22(y)^2 - 5(y) +2
or

2y25y+2=02y^2 - 5y +2 =0

Step 4: Factor the quadratic equation or quadratic formula can be applied:

2y25y+2=2y24yy+2=02y^2 - 5y +2 =2y^2 -4y-y+2=0 2y(y2)1(y2)=0(2y1)(y2)=02y(y-2)-1(y-2)=0\\(2y-1)(y-2)=0

Step 5: Solve for yy by setting each factor equal to zero: (2y1)(y2)=02y1=0 or y2=0(2y-1)(y-2)=0 \\2y-1=0 \space or \space y-2=0 y=2y=2 or y=12y=\frac12

Step 6: Substitute back xx+1\frac x{x+1} for yy and solve for xx:

xx+1=y\frac x{x+1}=y xx+1=2\frac x{x+1}=2 or xx+1=12\frac x{x+1}=\frac12

x=2(x+1)x=2(x+1) or 2x=x+12x=x+1

x=2x+2x=2x+2 or 2xx=12x-x=1

x=2x=-2 or x=1x=1

Solution:

Given equation: 2(xx+1)25(xx+1)+2=x12(\frac x{x+1})^2-5(\frac x{x+1})+2 = x\neq -1

Let (xx+1)=y(\frac x{x+1})=y

so given equation will become 2(y)25(y)+22(y)^2 - 5(y) +2
or

2y25y+2=02y^2 - 5y +2 =0

2y25y+2=2y24yy+2=02y^2 - 5y +2 =2y^2 -4y-y+2=0 2y(y2)1(y2)=0(2y1)(y2)=02y(y-2)-1(y-2)=0\\(2y-1)(y-2)=0

2y1=0 or y2=0\\2y-1=0 \space or \space y-2=0 y=2y=2 or y=12y=\frac12

Since, xx+1=y\frac x{x+1}=y substituting back: xx+1=2\frac x{x+1}=2 or xx+1=12\frac x{x+1}=\frac12

x=2(x+1)x=2(x+1) or 2x=x+12x=x+1

x=2x+2x=2x+2 or 2xx=12x-x=1

x=2x=-2 or x=1x=1

****The solution set is {2,1}\{-2,1\}